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A variation in the coupled order parameter treatment of Dicke Hamiltonians in thermodynamic
equilibrium is presented. The Hamiltonian is linearized by introducing disposable c-number parameters.
These parameters are chosen to minimize the resulting free energy. This requirement leads to a system of
coupled nonlinear equations whose bifurcation properties are studied. The solution branches are labelled by
the inertia of the free energy stability matrix. We prove that the parameters on the solution branch which
provide the global minimum free energy also produce a linearized Hamiltonian thermodynamically
equivalent to the original Hamiltonian provided only a finite number of field modes are present. This
method is used to discuss the bifurcation and stability properties of the Dicke Hamiltonian with 42 and
counterrotating terms. We also discuss why the phase transition disappears in the presence of external
currents or fields. We show how an internal gauge destroying mechanism may lead to the persistence of the
phase transition even in the presence of external coupling. The method is used to discuss the phase
transitions and multiplicity of ordered state phases in multilevel molecular systems. We also present a
simple method for determining whether an external source will or will not destroy a second order phase
transition and discuss the conditions under which such models may exhibit first order phase transitions.

1. INTRODUCTION

Recent interest in the equilibrium statistical mechan-
ics of Dicke Hamiltonians! has been stimulated by the
proof by Hepp and Lieb,? of the existence of a second
order phase transition for sufficiently large values of
the coupling constant .

The presence and location of the phase transition is
an example of the bifurcation® of a nontrival solution of
a particular nonlinear equation from its trivial solution.
In a bifurcation analysis of Dicke Hamiltonians, B=1/kT
plays the role of the bifurcation parameter and the gap
equations, which determine the critical temperatures,
are simply the bifurcation equations.?®

In the present work, we treat Dicke Hamiltonians by a
variation of the coupled order parameter method.*®
This intrinsically nonlinear treatment emphasizes the
bifurcation properties of nonlinear equations associated
with specific model Hamiltonians. This method involves
an attempt to find a linear Hamiltonian which is ther-
modynamically equivalent to the original Hamiltonian.
This process is carried out in two steps:

1. The Hamiltonian is linearized by introducing un-
known disposable c-number parameters. The intensive
free energy, or free energy per particle, is computed
for the linearized Hamiltonian, and the disposable c-
number parameters are chosen to minimize the free
energy. The disposable parameters obey a system of
coupled nonlinear equations which always possess one
solution, called the thermal or disordered branch. For
large enough values of the coupling constants, other
solutions, called ordered branches, may be possible
below certain critical temperatures. These branches
may arise either through bifurcation from the disorder-
ed branch or some other ordered branch, or otherwise.
The branches are characterized by the inertia of the
free energy stability matrix (FESM). Bifurcations and
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turn-arounds are characterized by the change in sign of
at least one eigenvalue of this real symmetric matrix.

2. It is then necessary to determine whether any of
the linear Hamiltonians associated with solutions of the
nonlinear equations is thermodynamically equivalent to
the original Hamiltonian. This can be done by determin-
ing the convergence properties of a perturbation se-
ries,*5 or by a direct estimate of the intensive free en-
ergy of the original Hamiltonian. On the globally stable
branch, the disposable parameters have a natural in-
terpretation as order parameters for the system.

In Sec. 2 we illustrate step 1 of this method using the
original Dicke Hamiltonian.! In Sec. 3 this method is
applied to the Dicke Hamiltonian “dressed” by counter-
rotating and A® terms.*® In Secs. 4 and 5 we discuss
the effect of external sources—classical fields or clas-
sical currents—on the bifurcation properties” of the
Hamiltonian treated in Secs. 2 and 3.

In Sec. 6 we prove that the linear Hamiltonain asso-
ciated with the global minimum solution of the coupled
nonlinear equations is in fact thermodynamically equiv-
alent to the original Hamiltonian, provided there are on-
ly a finite number of field modes present. These results
are extended in Sec. 7 to a qualitative discussion of the
ordered states of multilevel molecular systems inter-
acting with a finite number of modes of the radiation
field. In Sec. 8 we give a physical interpretation to the
density operators which arise in connection with the
Hamiltonians discussed in Secs. 2—5.

2. DICKE HAMILTONIAN
The Dicke Hamiltonian

N N
Hy=wd'a+e2 )3 af+ Q/W)E@*a; + aq,‘)
41

J=1

2.1)

is linearized by expanding the operators a#, gt in the
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interaction term about disposable c-number parameters

uVN and v as follows:
a= N +(a- pwN), of=v+(0;-v). (2.2)

The factor VN has been introduced for convenience.
Then

H,=H +H,,
where the bilinear term is

HBL:(A/\/'N)f){(a*—u*\/N)(o;—v)+h.c.}. (2.3)
41

The linear Hamiltonian is of the form

H =H,+H +H, 2.4)

N
Hy= =22 {u*y + pv*),

it N N
H =wd'a+ (\/VN) <a*2v+a2 V*) ,

=1 j=1
N

H, 2:211{%0," +ap*o; +>\pa;}. 2.5)

The terms H,, H,, H, commute. As a result, the free
energy F, associated with H; is the sum of the free
energies associated with H,, H,, H,. These free ener-
gies are simple to compute since they are analytic con-
tinuations of characters of representations of the Lie
groups H(4) and SU(2):

F,=H, F =- (ﬁ/wN]i)y +(1/PNn(l - eBv),

7=

F,=~(1/8)NIn2coshg¥, 2.8)
= (/2% +)2u*u. 2.7
The intensive linear free energy is
F/N=-x(p*v+ w*) - 0%/ wh*y
X - (1/8)In2coshg 6 + (1/NB)In(1 — e8). 0.9
2.

Next, F;/N is minimized by appropriate choice of the
parameters [, v. A necessary condition is the vanish-
ing of the first derivatives,

L (Fu/N) == ru= 03/ wr=0, (2.92)

9
5% (FL/N)==xv - (®11/26)tanhBé=0. (2.9b)
Similar equations relating p* and v* are easily obtained.
The coupled nonlinear equations (2.9) may be treated by
eliminating either u or v:

[w~ (2/26)tanhp8]p=0.
This nonlinear equation always has one solution, u=0,
called the disordered branch. A nontrivial solution
u#0, v+0 is possible if the implicit equation®

w=(2/26)tanhB 6 (2.11)

can be solved. This is only possible if x*/ew>1. In this
case, a nontrivial solution bifurcates from the trivial
solution at a critical temperature determined by the
bifurcation equation

w= (A*/e)tanhzB ¢ .

(2.10)

2.12)
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For T<T,, p#0 is determined uniquely up to a phase
factor by (2.11).

The coupled equations (2.9) are necessary but not suf-
ficient to determine the minimum value of F; /N. It is
also necessary to examine the free energy stability mat-
rix in a Cartesian coordinate system. Since u and v are
not independent, it is useful to express F, /N as a func-
tion of u, u* or v,v*. Using (2.9a) to eliminate v, v*,
and writing p=x+iy =x, +ix,, we have in the thermo-
dynamic limit

flx,y) =1im F /N = w(x? +y2) — (1/8)In2cosh3é,
e (2.13)

The free energy stability matrix f, = azf/ax,ax', may then
be evaluated on each branch of the nonlinear equations
(2.9). The inertia of this matrix then characterizes the
stability properties of the various branches.

On the thermal disordered branch, the inertia is (++)
for T>T,, (00) for T=T, and (- =) for T <T,. On the
ordered branch, it is (+0) for 7<T,. Since 8%f/ ox; 0x,
is positive definite for T > T, and positive semidefinite®
for T<T_, there is a local and global minimum on the
disordered branch above the critical temperature and
a nonlocal minimum on the ordered branch below the
critical temperature, respectively.

For T <T,, the potential f(x,y) has the form of Fig.
(63) of Ref. 10, rotated around the symmetry axis. The
free energy assumes its minimum value on the circle
whose radius | ul is determined by (2.11) but whose
azimuth is undetermined. This SO(2) gauge invariance
is responsible for the fact that the free energy stability
matrix is not positive definite. Evaluated on the mini-
mum circle, the radial eigenvalue is positive and the
azimuthal eigenvalue is zero.

3. A2 AND COUNTERROTATING TERMS

Next, we consider the Dicke Hamiltonian (2.1) modi-
fied by the inclusion of the A% and counterrotating
terms.*® This “dressed” Dicke Hamiltonian is

N
Hy =3wla'a+ ad’) + k(a + a)® +¢ ZE L
FE

N
+ GW/VN 2 (a'01'+a0:,'+r*a"0;+ra0;). (3.1)
=1

By making a canonical transformation

b | _|coshy exp(i@) sinhy||a

- H

3.2
bt| jexp(-i¢)sinhy coshy at
it is possible to eliminate the double frequency terms
@,, d'? or the counterrotating terms a'0?}, ac;. In Table
I we list the values of tanhy which cause this elimina-
tion, as well as the relevant parameters of the result-
ing Hamiltonian. These calculations have been carried
out assuming » real, -1 <r<+1,

It is clear from Table I that for

2
sEl+4£—(1+Y> =0
w

= (3.3)

the Hamiltonian (3.1) can be reduced to (2.1) with re-
normalized parameters. As a result, we should expect
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TABLE 1. Renormalized parameters for Hpp in (3.1) under a canonical transformation (3. 2) which eliminates either the 42 or the

counterrotating terms, In this table, f=1+4(x/w).

tanh vy w’ K N »t
1-»r 1/2
1721 A . " -\t )/
—fl/2+1 fi/zb) 0 E{(l +Y)f 1/4+(1 -’V)fl/‘l} 1_, e
1+ il
1+
v 1-7\ __wr 21172
-y (l_y)b) K(I'F’}’\) “1-,2 Al ~79) 0
the surface s{w, k,7) =0 to play the role of a separatrix A2l = 7)? 6 12
for the branches of the nonlinear order parameter equa- 1= 20,0 tanhfé, (3.12)
tions associated with (3.1).
B =€/2+22(1 = r)%y2. (3.13)

Following the procedure described in Sec. 2, it is
possible to determine H;, F, /N, and the coupled order
parameter equations associated with (3.1). These equa-
tions are

sk
w+2k 2k i +1 1 # v =0, 3. 4a)
2K w+2x | | u* r 1 ¥
v A€ 1 |
€ + 26 tanhgé =0, (3.4b)
v* r 1 ||u*
92:(6/2)z+)\zlp,+r*u*|2. (3.5)

For simplicity, we assume 7 is real. These equations
may be diagonalized by performing a similarity trans-
formation with S= (I, —=#0,)/v2. Eliminating v,v* from
the resulting equations results in the matrix equation

2
2 +
S B ] 1o, (3.6)
26
w 1—1‘ hY
F=(/272+22(1 + 7P+ 221 = )32, (3.7)

where pL=x+1iy.

Equations (3.6) always possess the trivial solution
x=0, y=0. This is the disordered branch.

Nontrivial solutions (x#0,y=0) or {x=0,y#0) are
also possible if (w+4x) <A%(1 +7)%/c or w<A%(l — )2/,
When such solutions exist, they are called the real and
imaginary branches, respectively. On the real branch,
x#0 is determined uniquely up to sign by

AR+
1= 26, (w+ 4r) 2O0AY% ©.8)
= (/2 +23(1 + 7). 3.9)

The real branch bifurcates from the disordered branch
at a critical temperature 7, determined by the gap
equation

_ AR k)2

= o ran @.10

tanh3g e .
The imaginary branch bifurcates from the disordered
branch at T, determined from

A -p?
T ew

1 tanhzBe. (3‘.11)

For T<T,, y+0 is determined uniquely up to sign by
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If there is a secondary bifurcation® from either of the
primary branches onto a secondary branch (x#0, y#0),
then both diagonal matrix elements in (3., 6) must simul-
taneously vanish, This is possible only if s =0 in (3.3).
However, this is precisely the condition for the
Hamiltonian (3.1) to be equivalent to the original Dicke
Hamiltonian (2.1) under a canonical transformation.
Since the Dicke Hamiltonian (2.1) exhibits a doubly de-
generate bifurcation at the critical temperature T,
there is no secondary bifurcation from either of the
ordered branches of (3.6). This is consistent with the
results of Ref. 5. Since both Lie algebras SU(2) and
h(4) have maximal roots of level 1, there may be sev-
eral primary branches but no secondary branches.

The intensive free energy determined from the lin-
earized form of H,, is, in the thermodynamic limit

Flx,y) = (w+4k)x2 + wy? ~ (1/8)In2coshBé. (3.14)

The free energy stability matrix can be computed from
(3.14) and the inertia evaluated on each of the branches.
The results are

1. Disordered branch:

A2 +9)? 1 )
[sgn(l T elw+4k) tanhzef ,

2(1 = 4)2 R
sgn (1 - l—(e—wi tanhgﬁe)] .

2. Real branch, if it exists:

[+1, sgn(-s)].

3. Imaginary branch, if it exists:

[sgn(+s), +1].

The inertia of the free energy stability matrix is con-
stant along each of the ordered branches. On the dis-
ordered branch, one eigenvalue changes sign at each
bifurcation point, even in the degenerate case s =0.

If neither of the two equations (3.8) and (3.12) can be
solved, there is only the trivial solution to (3.6), and
the inertia is (+ +) on the disordered branch. If only one
of the two equations can be solved, the inertia is (++)
on the nonzero solution branch, (++) on the disordered
branch for T>T_, and (+-) for T <T,. On both branch-
es it is (+0) at the bifurcation point 7=T,.

R. Gilmore and C.M. Bowden 1619



TABLE II. Intertia of the free energy stability matrix obtained
from f(x,y) in (3.14) for different values of s in (3.3). For
s<0, the real branch is the high temperature branch. For

s> 0, the imaginary branch bifurcates at the higher tempera-
ture and is stable. On the separatrix s=0, the free energy is
invariant under the gauge group U{l) and the FESM is positive
semidefinite.

s<0 s=0 s>0
Real branch (++) (+0) =)
Imaginary branch (+=) (+0) (++)

If both (3.8) and (3.12) can be solved, the situation is
more complicated, depending on the sign of the differ-
ence s in (3.3). The inertia is (+ +) on the disordered
branch above both bifurcations, (- =) below both, and
(+ =) between. One eigenvalue changes sign at each bi-
furcation. The inertia is (+ +) on the high temperature
ordered branch and (+ =) on the low temperature order-
ed branch. As s — 0, the bifurcation points coalesce,
and the discussion reduces to that of Sec. 2. The re-
sults are summarized in Table II. These results are
illustrated in Fig. 1 for s <0.

4. EXTERNAL SOURCES

We now consider the changes brought about by the
addition of classical external sources. The Hamiltonian
we consider is

H=Hp+H,,. @.1)

A classical current will produce a coupling to the elec-
tromagnetic field of the form

Hc;.c.:hm at + *VN a. 4.2)

A classical field will produce a coupling to the atomic
system of the form
N
Hoyp.= E(K'O;"'X'*U;)- 4.3)
j=1
The Hamiltonian Hy,, + H¢, ., is equivalent to Hy,
+Hg, ., under a canonical transformation provided the
parameters h in (4.2), A’ in (4.3), and w, k, ¥ in (3.1)
are related by

-1
? kK
X :_Rl ™M fw+2x 2k n i @.4)

A* r 1 K w+2k] \n*

For this reason, it is sufficient to study the effects of
only classical external currents (4.2) in this and the
following section.

The coupled nonlinear equations describing the lin-
earized form of (4.1)=(2.1)+ (4.2) are

4.5a)
(4.5b)

wih+Av=—~h,
v+ (2/26)tanhp6=0,

where 0 is given by (2.7). Eliminating v leads to the in-
homogeneous equation

[0~ (2/26)tanhBOlu=~ k. (4.6)
Since p+0, this equation can be rewritten
(x2/26)tanhBl=w + h/ . @.7)

1620 J. Math. Phys., Vol. 17, No. 9, September 1976

(++)

Imu

(++)

FIG. 1. Solutions of the nonlinear equation (3, 6). For a%(1
+7)%/e w+4k)> N1 -)?/cw>1, s<0, the real branch bifur-
cates at a higher temperature than the imaginary branch and

is globally stable. Each branch is labelled by the inertia of the
free energy stability matrix. The two critical points are shown
by dots.

This equation always has one solution, for which p and
— h have the same phase, and for which wu/h<-1. For
A\2/ew sufficiently large, two additional solutions are
possible, but these no longer bifurcate from the thermal
branch. The presence of the inhomogeneous term in
(4.5a) “unhinges” the bifurcation, as can be seen by in-
specting (4.7). The solution branches for the inhomo-
geneous nonlinear equation (4.6) are shown in Fig, 2.

The intensive free energy obtained from the linearized
form of (4.1) is

A, p¥) =wp* p+ p*h+ ph* - (1/6)In2coshpo.

This differs from (2.13) by only linear terms. As a re-
sult, the matrix elements of the FESM obtained from
(2.13) and (4.8) are identical. However, these matrices
must be evaluated on the solutions of (2.10) and (4.6),
respectively. The results are shown in Fig. 2.

The inclusion of external terms destroys the gauge
invariance of the model. As a result, zero is no longer

{++ 1

FIG. 2. In the presence of external sources, additional low
temperature solutions to (4.6) do not bifurcate from the ther-
mal branch. Solutions to the corresponding homogeneous equa-
tion are shown by a dotted line. When one of the eigenvalues
of the FESM passes through zero dot), there is a turn-around
on the low temperature branch.
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Reu
3
(+ +)
-
{+ =}
'"\\ [ (X,Y) =(0,—\mh}
[ /’ <
L+~ _?_,/’ TR
pd (+ 4 )
Imu

FIG. 3. Solutions of the nonlinear equations (5. 2) with Rek=0,
Bifurcations of ordered branches from the disordered branch
are still possible in the presence of external fields provided
there is an internal mechanism to destroy gauge invariance.
The two critical points (dots) lead to bifurcation, since (5.2a)
is homogeneous, and to turn around, since (5.2b) is
inhomogeneous,

an eigenvalue of the FESM, There is no bifurcation, and
no phase transition.? The change in sign of one root of
the stability matrix is associated with a vertical
tangent.

In general,® a sign change in the inertia of the stabil-
ity matrix is associated with bifurcation (homogeneous
equation, cf. Fig. 1) or with turn around of a branch
(inhomogeneous equations, cf. Fig. 2).

5. RIGID HAMILTONIANS WITH EXTERNAL
COUPLING
Finally, we consider the Hamiltonian (3.1) in the

presence of external sources (4.2)

H=Hy  +H, .. (6.1)

The nonlinear equations arising from the coupled order
parameter treatment differ from (3.4) only by the ad-
dition of the matrix col (k, h*) to the left-hand side of
(3.4a). After diagonalization, the nonlinear equations
for u=x+iy are

2 2
{ (w+4k) - L%Z—r) tanhﬁ@}x:-Reh, (5.2a)
2 2
{w— 5__(}.2;_7') tanhB@}y:—Imh, (5.2b)

where =Reh+ ilmh and 6 is given by (3.7). The in-
tensive free energy obtained from the linearized form
of (5.1) differs from (3.14) by linear terms,

flx,y) =(w+4K)x® + wy? + 2xReh

+2yIm#k - (1/8)In2coshpé. (5.3)
Equations (5.2) always possess one soluction (dis-
ordered branch) with asymptotic limits lim,_. 4=~ #h,
and for which wx/Reh< -1, wy/Imh<-1. The presence
of the inhomogeneous term % #0 destroys at least one
bifurcation but need not destroy both. If Rek=0, (5.2a)
may possess a nonzero bifurcating solution which we
call loosely the “real ordered branch.” See Fig. 3.
Similarly, if Imk=0, (5.2b) may possess a nontrivial
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bifurcating solution called the “imagninary ordered
branch.”

For T sufficiently large, the FESM has inertia (++)
on the disordered branch. The inertia along this branch
can change only at a bifurcation, since there are no
turn arounds. If there are no bifurcations from the dis-
ordered branch, there will be no phase transition. If
an ordered branch does bifurcate from the disordered
branch, the inertia on the disordered branch is (+~) for
T <T, and is (++) on the ordered branch. There is then
a phase transition.

We illustrate a situation now for which 2+ 0 but there
is a phase transition. We choose Reh=0, s<0 (3.3).
The real ordered branch obeys a homogeneous equation,
and is in fact the nonzero solution to (3.8). On this
branch, the value of y is constant and uniquely deter-
mined by the relation

{w - (w+4ic)<i—1;>z }y ==Imh.

The real branch bifurcates from the disordered branch
at a critical temperature determined by the gap
equation

(5.4)

(w+4k) = MA AP tanhzBge,, =0, (5.5)
eff
() -] o
A\ /1 -7272
w? [1—<1+4 5>(I+V>] . (5.6)

For s =0, there is no bifurcation (Sec. 4), and for s>0,
if there is a bifurcation, it occurs on one of the discon-
nected imaginary solutions and is never globally stable.

6. THERMODYNAMIC LIMIT

In Secs, 2—5 we have been concerned entirely with
the problem of determining linearized Hamiltonians
which may be thermodynamically equivalent to the orig~
inal Hamiltonian. In this section we prove that the lin-
earized Hamiltonian associated with the global minimum
solution to the coupled nonlinear order parameter equa~
tions is in fact thermodynamically equivalent to the
original Hamiltonian.

To do this, it will be convenient to derive a useful
technical result. It is necessary to compute limits of
the form

1
i(B) =1lim — ﬁlnIN(B), {6.1)

L,(B) = [ glehee @} gy, (6.2)

In this integral, we assume g(x), @(x) are analytic func-
tions of k real variables, x=(x,,... ,x,), the integral
extends over R%, g{x) >0, ¢(x) is bounded below with a
finite number ¢ of isolated local minima, and lim, .
Inl @(x)! /Inlx| > 0. Although many of these assumptions
can be relaxed, it is not necessary to do so for our
purposes.

We expect the principal contributions to IN(B) to come
from the neighborhoods where ¢(x) has a local mini-
mum.'? Assume first that ¢ has only one local minimum
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at x =x"’, Expanding g(x), ¢(x) in a Taylor series re-
sults in the expression

I9(B) = gxM)exp [~ NBo(x )]
x [exp{-3(c-xD),0,,W)(x =xD), }dx

+ 01,
@, (1) =23%0(K"V)/ox,0x,.

{6.3)
(6.4)

The matrix ¢,,(1) is positive definite and symmetric,
since we have assumed that ¢ has an isolated minimum
at x*). The integral in (6.3) is standard,

IP(B)=glx) exp[ - NBo(x™)](@m)/ *[dete,, (1)]1/2.
6.5)

If ¢(x) has more than one isolated local minimum, then
¢

1,(B) =22 I® () +O(N"Y).

b=1

(6.6)

This result can be made rigorous by introducing (5,¢)
notation. The proof follows those in Ref. 14 almost
mutatis mutandis.

The principal contribution to the sum (6.86) will come
from the global minimum of ¢, If this minimum is #'-
fold degenerate, then

i(B) =lim -Nl— 1n<i£1/ 1,5“(5))

N-w NB

=@(m) - 1lim J'VLB {Int'glm) + SkIn27 — zlndeto, ;(m)}
Naw

=¢(m).

Here m is any one of the ¢’ isolated points at which ¢
assumes its global minimum value.

6.7)

The method of maximum contribution described above
does not apply directly when ¢ does not have isolated
minima. In this case, det ¢,;=0. It often happens that
a symmetry group G exists which acts transitively*! on
nonisolated minima. In this case, we can decompose
the integral appearing in (6.3) into an integral over G
and an integral over G orbit representatives {*/G:

Jax=[ « du(RY/G) [ du(G), (6.8)
where du{R*/G) and du(G) are the invariant measures
onR*/G and G, respectively. If G is compact, [ du(G)
is finite and does not contribute in the limit (6.7). If ¢
has a finite number of isolated minima on R%/G, then
Laplace’s method can be applied directly, resulting in
(6.7).

We now apply Laplace’s method to discuss the second
step involved in the coupled order parameter method,
described in the Introduction. This is done for (5.1);
the other Hamiltonians (2.1), (3.1), and (4.1) are
special cases of (5.1). The approach used is that of
Wang and Hioe.!®

The free energy for (5.1) is determined by

¢ 8F — TreBH 6.9)

The trace over the field states is taken conveniently by
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introducing the Glauber coherent state representation, !¢

0= 3 (ol = [ Ll |m) (6.10)

n=0
In this representation the field operators are replaced,
to an adequate approximation, by the complex numbers
a,a*, The trace over the 2V atomic basis states is
straightforward. Writing a = VN (x +iy), the integral
resulting from (6.9) in the representation (6.10) has the
form given in (6.1), with g(x,y)=N/7, and to O(N"?),

(v, y) = (w+4K)x* + wy? + 2xReh

+ 2yImh - (1/ 8)In2¢coshpo, (6.11)

where 0 is given by (3.7). This is identical to (5.3).
Therefore,

UmF/N = @(m) =fm) =limF /N.

N=oo N=o

(6.12)

The first equality results from application of the method
of maximum contribution, the second from comparison
of (6.11) with (5.3), the third by direct computation
from the linearized Hamiltonian H, evaluated with order
parameters on the global minimum branch of the coupled
nonlinear order parameter equations.

As a result, H;, is thermodynamically equivalent to
H, when H, is obtained from H by the coupled order
parameter method using order parameters on the global
minimum branch of the coupled nonlinear equations.

No modifications are necessary in the case of gauge
invariant Hamiltonians and free energies.

7. APPLICATION TO r-LEVEL SYSTEMS

The results of the preceding sections may be applied
to more complicated Hamiltonians than those discussed
in Sees. 2—5. In this section we extend the coupled
order parameter treatment to multimode systems and
to multilevel systems.!®

We consider first an ensemble of N identical 2-level
systems interacting with # (finite) modes of the field,
and described by the Hamiltonian

n N

N
a,+e 25307+ (L/VN) 20 20 (WFalo; +2,a,0%).

n
H=7, w,ala, T Ha,a,08
i=1 j=1 i=l ja1

(7.1)

With more than one mode present, it is no longer
possible to choose the relative phases of the ground and
excited state wavefunctions so that the coupling constants
x; are all real.

The Hamiltonian (7.1) is linearized by making the
ansatz (2.2), with one disposable c-number parameter
for each field mode [a,—~u, VN + (a, - u,VN)]. The re-
sulting coupled equations are

w by FAfr=0, i=1,2,...,n, (7.2a)
V+§1E (é}lx‘ub tanhB6=0, (7.2b)
@k (b ). e
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It is convenient to eliminate the parameters u, using
(7.2a) to obtain a nonlinear equation for v:

{1 = (A%/26)tanhpd} v =0, (7.4)
where
2, I, 12
N3y Al (7.5)
The free energy in the thermodynamic limit is
Av,v*)=A?|v|? - (1/B)In2¢coshpB0, (7.86)

This free energy is to be evaluated on the global mini-
mum branch of (7.2). The results obtained for the
multimode case are identical to those obtained in Sec.

2 for the single mode case under the identification x —~A.
The Hamiltonians of Seecs. 3—5 may be treated simi-
larly, with similar results.

We consider next an ensemble of N identical »-level
atoms interacting with (f) modes of the radiation field,
with one mode connecting each pair of levels. The
Hamiltonian describing this coupled system is

,
- (
=7 w“a“a”-kETeH”

1=4<y
N r
+ /N Z“Z)( Oyaf, BYY +agia, E). (1.7
=1 1=i¢y
Here the field mode operators af, obey
ot
a;;=a,, (7.8)
(@, al]=6,,6,;. (7.9)

The operators H{", E‘” describing atom [ obey in-
dependent u(r) commutatlon relations.''!” The operator
Eﬁ) describes transitions from state i to state j in atom
I. The ¢, describe the internal levels of each molecule,
and w,; the energy of the photon field mode connecting
levels 7 and j. It is sometimes convenient to assume

€y Se<e<e and w,, =¢; —¢,, although we will not make
these assumptions here.

The Hamiltonian (7.7) can be treated by the coupled
order parameter method, making the ansatz

a,;= 1, VN +(q;, - 1,,YN), (7.10a2)

E§§.>:v“+(E§;’—V”). (7.10b)
The nonlinear equations relating K,, and y, are

Wy by A, =0, lsi<js<y, (7.11a)

(e,—ej)V,.].+7\“u“(Hj—H{):0, l<i<js<y. (7.11b)

The expectation value in (7.11b) is to be taken with re-
spect to the v X7 matrix
r T
M(y):i__EIEiHiJ"P—;/;Q O E g B E). (1.12)
The nonlinear equations (7.11) can be treated either by
eliminating the u,, or the Vi Eliminating the latter
leads to the (3) equations

7\“7\II<H _HZ>
{“’H" p : My =0.

(7.13)
i€

The conjugates of these equations need not be considered
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in the absence of gauge symmetry breaking terms of
the form considered in Secs. 3 and 4. The intensive
free energy in the thermodynamic limit is

Ay 15) :12<¢</ w,, | iy |2 - (1/B)InTr exp[ - BM(r)].
(1.14)

This is obtained from the linearized Hamiltonian ob-
tained from (7.7) and evaluated on the global minimum
branch of (7,13).

The bifurcation properties of (7.13) are not difficult
to discuss in a qualitative way. For sufficiently large
temperatures, there is only the trival solution u,, =0,
for all i ,j. On this chaotic branch the FESM has inertia
(n,ng,m.) = (r(» =1),0,0). As the temperature decreas-
es, two eigenvalues approach zero. At zero, a gauge
invariant ordered branch escapes. Just below the bi-
furcation, the FESM has inertia (»* -+ ~2,0, —2) on
the thermal branch and (-7 -1,1,0) on the ordered
branch.

Additional bifurcations may occur from the thermal
branch as the temperature decreases. Each time an
eigenvalue of the FESM changes sign, it is possible for
a solution to escape. Since M(¥) (7.12) is a function of
(t) complex variables with (¥ = 1) real nonlinear Casimir
invariants, there may be as many as (v — 1) primary
bifurcations from the thermal branch onto primary
branches for Hamiltonians of the form (7.7). In fact, by
direct computation of the fluctuation-transformation
matrix,® it is possible to verify the existence of no more
than four primary bifurcations from the thermal branch
for »=3. Each of the primary branches may have one
secondary bifurcation, but no secondary branch has any
bifurcations. In addition, one of the four primary
branches has a turn around.

For the »-level system, the primary branches may
undergo secondary bifurcations, the secondary branches
may have tertiary bifurcations, etc. The process stops
on the (» =1)®Y pranch. This may happen even if the
only nonzero coupling constants are A, ,,, and x,,, ;. This
occurs because the level of the highest root in the Lie
algebra u(») is - 1.

It is generally true that, as a function of decreasing
temperature, the first bifurcation to occur from the
k¥ branch to a (k +1)¥¥ branch has a positive semidef-
inite FESM, x=0,1,2,...,7v -2, If no other branches
have a positive definite or semidefinite FESM, then this
is the global minimum solution. It is possible for a turn
around to occur on some other branch which changes the
FESM from indefinite to positive definite or semidef-
inite. In this case, there may be an exchange of stabil-
ity between these branches. Such a stability exchange is
associated with a first order phase transition. A model
Hamiltonian in which this occurs has been discussed by
Thompson.!®

The linearized Hamiltonian obtained from (7.7) and
associated with the globally minimum branch of (7.13)
is thermodynamically equivalent to (7.7). If there is on-
ly a discrete free energy invariance group, the theorem
of Sec. 6 is immediately applicable. If there is a gauge
group G, then G is a closed subgroup of SO(* - ») and
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is therefore compact. Thermodynamic equivalence
follows.

Gauge breaking terms of the form considered in Sec.
3 may be added to (7.7). These can be treated following
the methods of that section. Their principal effect is to
lift degeneracy at bifurcation points.

External sources of the form considered in Sec. 4 may
be added to (7.7). Such sources destroy some bifurca-
tions, but not generally all bifurcations. A simple test
exists to determine which bifurcations are destroyed and
which are not. Let u(7T) be a nontrivial solution of the
homogeneous problem arising by bifurcation at a criti-
cal temperature T,. Let (, ) represent the usual
Hermitian inner product in C7""?/2, Then |T ~T,|'/?
d/.L(TC)/dT is finite. If (h, | 7~ T |12 Au(T,)/dT)=0,
the bifurcation is preserved; if the inner product is
nonzero, it is destroyed (cf. Sec. 5).

The Hamiltonian (7.7) may be made more complicated
by allowing more than one field mode to couple to each
pair of molecular states, as considered in (7.1). The
coupled order parameter treatment is then simpler to
carry out by eliminating the p,, instead of the iy from
equations (7.11), The results are exactly the same as

in the single-mode-per-level-pair case (7.7), provided
only a finite number of field modes are present and re-
normalizations of the form (7.5) are carried out for
each pair of levels.

8. PHYSICAL INTERPRETATION

The density operator describing a system in thermal
equilibrium is p=exp(- //)/Z, Z=Trexp{~ 8/{). For
the computation of intensive parameters, but not for
fluctuation quantities, it is sufficient to replace /#/ by
/1, for the class of Hamiltonians studied in Secs. 2—5,
7. Here #{, is obtained from // by the coupled order
parameter method and evaluated on the global minimum
branch. The density operator then factors into a product
of density operators p=p;® p, . The field density op-
erator, py, describes the equilibrium properties of the
field subsystem, p, describes the atomic subsystem
properties. For the Hamiltonian (5.1)

H =wd a+ x(d" + a)* +2VN a' (v + r¥v*)

+AVN alp* +»v) + VN at + i*VN a, 8.1)

N
Hy= 2 ez 0z tn(p o ps)ol +a(pr +ru)ojt. (8.2)
J=

The Hamiltonian (8.1) describes a field mode in a
statistical superposition of thermal noise and a coherent
state produced by classical currents. The classical
currents are 4 VN and the individual atoms, which act
classically and drive the field mode through the terms
a»VN v, etc. To convert (8.1) to a situation describing
a field driven by classical sources in the absence of
matter, we perform a canoniczal transformation which
eliminates the A% term, using the parameters in line 1
of Table I. The coupled nonlinear equations are then
solved for u,r. The transformed density operator then
describes a field mode in vacuum which is a statistical
superposition of noise, characterized by noise factor
N=[exp(Bw’) —1]*, and a signal, characterized by the

1624 J. Math. Phys., Vol. 17, Na. 9, September 1976

coherent state parameter!® ¢ = uvN. Here u(8) is the
global minimum solution to the nonlinear equations of
the transformed Hamiltonian.

The atomic density operator obtained from (8.2) de-
scribes 2-level atoms in a statistical superposition of
noise and signal. The thermal part is characterized by
weight factors exp(s 8E/2), where

ev

2l1/2
A'o%)
is the Stark split level separation caused by a classical

external field. The atomic coherent state parameters®
(6, ) describing the signal are related by

E-=2 [(G/ 2)2 +

exp(-i@)siné=vp/[| 20y |2+ |v[2[1/2, 8.3)

These results do not generalize to multilevel molec-
lar systems with »>2,

9. CONCLUSION

A variation of the coupled order parameter method
has been applied to the description of several model
Hamiltonians. In this method, the Hamiltonian was lin-
earized by expanding the shift operators appearing in the
interaction term about disposable c-number parameters,
The free energy of the linearized Hamiltonian was com-
puted, and the parameters were chosen to minimize
this free energy. Vanishing of the first derivatives led
to a system of coupled nonlinear equations for the dis-
posable parameters. The different branches of the non-
linear problem were labelled by the inertia of the free
energy stability matrix. Only branches with a positive
definite or semidefinite FESM can provide parameters
yielding a linearized Hamiltonian thermodynamically
equivalent to the original Hamiltonian.

It is always possible to find solutions of the nonlinear
equations for which the FESM is positive definite or
semidefinite. In the latter case the free energy is in-
variant under a gauge group. We proved in Sec. 6 that
the global minimum of the nonlinear equations does in
fact supply a thermodynamically equivalent Hamiltonian
for any model Hamiltonian of Dicke type [i.e. (7.7}] with
only a finite number of field modes present.

Applying these results in Sec. 3, we saw that the real
or imaginary branch is globally stable if s <0 or s>0.
In Sec. 4 we showed that external sources will destroy
the second order phase transition in the simple Dicke
model. If internal mechanisms are present which al-
ready destroy the gauge symmetry, then the phase
transition may persist under certain conditions (Sec. 5).
In Sec. 8 we gave a physical interpretation to the density
operator obtained from the linearized form of (5.1).

In Sec. 7 we treated generalized Dicke models. The
changes brought about by introducing several field
modes were easily treated [(7.5)]. The Dicke
Hamiltonian describing multimode-multilevel interac-
tion (7.7) was then treated by the coupled order para-
meter method. The bifurcation properties of the result-
ing nonlinear equations were treated qualitatively, and
it was apparent that there is a much richer spectrum of
possible ordered states for 3-level systems than for 2-
level systems. The modifications required by allowing
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more than one mode per pair of molecular levels were
discussed. Finally, we presented a criterion for de-
termining whether an external coupling will destroy a
bifurcation and therefore a phase transition.
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Classification of all simple graded Lie algebras whose Lie
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All simple graded Lie algebras whose Lie algebra is reductive are presented, and the classification theorem
is proved. Several theorems which may show up to be useful in a different context are also included.

1. INTRODUCTION

Graded Lie algebras made their appearance in the
early sixties in mathematics,! were rediscovered by
physicists in the early seventies, 2 and recently started
to have parallel evolutions.?® In the present paper we
will try to phrase the problem in both languages. The
readers interested in immediate physical applications
will probably be mainly interested in the first two
sections.

A graded Lie algebra a contains both commutators
(L, D and anticommutators { , 1),

[Qm: Qn]:Clr’nn pr (1- 1)
[Qm; an]:F?na VB, (12)
{Von VB}:A;?BQm- (1- 3)

The even generators (€,) form a Lie algebra (even sub-
space)g , the odd generators (V,) generate the odd sub-
space u (a =g ©u). The odd generators verify the
Jacobi identities

(Quy 1 Vas Vet H{[Ves @, Vot +{[ Vs, @ul, V=0, (1.9

[Va 7{VBv VT}] + [VY?{V(!7 VB}J + [VB9{V1’$ Va}]: 0’ (1~ 5)
and form a representation of the algebra g .

One can define a Killing form through the adjoint rep-
resentation of the algebra o (i.e., with the help of the
structure constants) as follows*:

Zmn = 8Zam = ChgClp = F o F 5,
Gus == 8o =F nadiy ~ Fladdy, (1.6)
Ema =Zam= 0.

It is also possible to define a frace-form metric asso-

ciated with anv (graded) representation of « (not neces-
sarily the adjoint representation).’

Let us remind the reader what is the present stage
of the problem of classification of the graded Lie
algebras.

In Ref. 4 the graded Lie algebras which satisfy the
criteria

(a) ¢ is simple,
(b) the Killing form of a is nondegenerate

have been classified. The classification was possible
because of two theorems, the weight-root theorem
(which relates the weights of the representation V, to
the roots of the Lie algebra ¢) and the C theorem [which
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relates the AJ; coefficients in Eq. (1.3) to the F%, co-
efficients of Eq. (1.2)]. These two theorems will be
generalized in Sec. 3.

In Ref. 6 the present authors have given without proof
(the proof is contained in the present paper) the classi-
fication of the graded Lie algebras which satisfy the
criteria

(a) ais simple (contains no nontrivial ideals),
(b) the Killing form of a is nondegenerate.

These algebras were called siviclly simple. In Ref. 5
it was shown that a graded Lie algebra which has a non-
degenerate Killing form is the direct product of strictly
simple algebras.

In an independent investigation, Freund and
Kaplansky’ have classified the algebras for which

(a) a is simple,
(b) at least one trace-form metric is nondegenerate.

In the present paper we present all graded Lie algebras
for which

(a) o is simple,

(b) o is reductive (g = a, % g, where g, is semisimple
and g, Abelian).

As will be shown the algebras considered previously*~’
are all contained in the present class.

After our work was completed, we learnt of a paper
by Kac® who has classified all simple graded Lie alge-
bras. The algebras we are considering are called by
him classical.

The classical simple graded Lie algebras have been
discovered independently by various authors. Apart
from Ref. 8 which contains all of them, we mention that
the special linear and orthosymplectic graded Lie alge-
bras have been defined in Refs. 5 and 7, the exceptional
graded Lie algebras have been found in Ref. 7, and the
remaining classical graded Lie algebras have been con-
structed in Ref, 5 [among the latter there are the well-
known (f, d) algebras of Gell-Mann, Michel, and
Radicati®|.

The line of thinking of this paper was started in Ref.
5 where two of the present authors showed the special
role of simple graded Lie algebras whose Lie algebra
is reductive. It was shown that for these algebras the
odd generators V, form a completely reducible repre-
sentation with at most two irreducible components.
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This result has far reaching consequences. In fact,
assume that ¢ is neither simple nor of the particular
form gl(1) X ¢, or sl(2) Xg; with a simple Lie algebra
8. Then it is possible to read off the complete struc-
ture of a directly from the Jacobi identities. The spe-
cial cases excluded above can then be treated by a care-
ful study of the representation on the odd generators.
Furthermore, the Killing form of a plays a crucial role
in the latter discussion.

Our work is organized as follows. In Sec. 2 we de-
scribe the families of simple graded Lie algebras con-
taining a reductive Lie algebra. These families are
given in an explicit matrix form so that the calculation
of the structure constants in (1.1)—(1.3) is an elemen-
tary exercise. The three exceptional algebras are men-
tioned, but their construction is left for a subsequent
paper.10 The classification theorem is also presented in
Sec. 2. Its proof depends on the general results derived
in Ref. 5; those which are most important are summa-
rized in a second theorem.

In Sec. 3 we collect some preliminaries and general-
ize the two theorems of Ref, 4.

The last three sections contain the main proof. We
have to distinguish several cases depending on whether
the Lie algebra g is simple or not and whether the odd
subspace u is irreducible or not.

Our proof depends essentially on some results on
“low dimensional” irreducible representations of sim-
ple Lie algebras. These results as well as our nota-
tional conventions concerning Lie algebras are collected
in four appendices. As a by-product, the classification
of the algebras considered in Ref. 4 is reobtained in an
elegant way in Appendix C.

The problem of the representations of the graded Lie
algebras whose Lie algebra is reductive is not consi-
dered here but will be dealt with in another paper.!?

Our notation concerning graded Lie algebras is that
of Ref. 5, in particular we denote the multiplication in
a graded Lie algebra [see (1.1)—(1.3)] by a bracket
{, . All vector spaces and algebras are supposed to be
finite dimensional over an algebraically closed field K
of characteristic zero (for example the field of complex
numbers).

2. COLLECTION OF SOME EARLIER RESULTS AND
FORMULATION OF THE MAIN THEOREM

In Ref. 5 we constructed several (double) sequences
of simple graded Lie algebras. Our starting point was
the geneval linear grvaded Lie algebra pl(n, m). This
algebra is defined as follows: Choose any positive inte-
gers i, m > 1 and let pl(n, m) be the vector space of all
(n +m) X(n+m) matrices, written in block form

X_

~(¢5)

A an arbitrary »X»n matrix,

(2.1)

with
B an arbitrary nXm matrix,

C an arbitrary m Xn matrix, D an arbitrary m Xm
matrix,
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The Lie algebra g of pl(n, m) consists of the “diagonal”
block matrices (4 }). The odd subspace u of pl(r,m) con-
sists of the “off-diagonal” block matrices (J £). The
bracket (X, X" of two elements X, X’ of pl(n, m) is the
usual commutator if X or X’ is an element of g ; it is
the anticommutator if X and X’ are elements of u . Hence
if X'= (4. 5)), we obtain
X, X"

AA'-A’A+BC'+B'C BD'-B'D+AB'-A'B
CA'-C'A+DC'-D'C DD'-D'D+CB' +C'B
2.2
Note that the mapping
A B DC
B A

(2.3)
CD

is an isomorphism of pl(n, m) onto pl(m, n).
(a) Define the special linear graded Lie algebra

spl(n, m) by

AL € pl(n, m) | Tr(A) = Tr(D)
CD

spl(n, m) = (2.4)

Its Lie algebra is sl(r) Xsl(m) X gl(1) [where gl(1) is the
trivial one-dimensional Lie algebra]. If n#m then

spl(n, m) is simple. Since spl(n, m) and spl(m, n) are
isomorphic, it suffices to consider the algebras spl(x, m)
withn>m=1.

(b) The algebras spl(n, n) are not simple. In fact they
have a nontrivial center z, which consists of the scalar
multiples of the unit matrix

z,= Ny 0 re K\,
0 A,

(2.5)

(Quite generally I, denotes the ¥-dimensional unit mat-
rix.) The quotient algebra spl(n, #)/z, is simple if n= 2;
its Lie algebra is sl(n) Xsl(n).

(c¢) Suppose that #=2p is an even positive integer and
that #2 > 1 is an arbitrary positive integer. Define the
2p X 2p matrix

_(9 L
o=(%5)
Then the subalgebra of pl(2p, #) consisting of all block

matrices (5 5) which satisfy

‘tAG+GA=0, 'D+D=0, C='BG

(2.6)

(2.7

is simple. Its Lie algebra is sp(2p)*Xo(m). Hence this
algebra will be called an orthosymplectic graded Lie
algebra; it will be denoted by osp(2p, m). Note that the
cases m =1 and m =2 are not excluded; note, further-
more, that osp(2, 2) is isomorphic to spl(2, 1).

(d) Suppose that n=m > 3. The subalgebra of pl(n, n)
consisting of all block matrices (& 5) with

tA+D=0, 'B-B=0,

fC+C=0, Tr(A)=0 2.8

is simple. This graded Lie algebra will be denoted by
b(r); its Lie algebra is sl(n).
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(e) Suppose once again that n=sm > 3. Define a sub-
algebra d(»n) of pl(n, n) by

() ={(§f)]Ac glin), Be sl(n)}.

The center of d(n) is equal to z, [see (2.5)] and the quo-
tient algebra d(n)/z, is simple. Note that d(n})/z, is the
(f, d) algebra of Gell-Mann, Michel, and Radicati.® Its
Lie algebra is equal to sl(s).

(2.9

(N In a subsequent paper'’ we shall prove that there
exist some additional simple graded Lie algebras whose
Lie algebra is reductive. These algebras will be called
exceptional. There exist:

(i) A one-parameter family of 17-dimensional simple
graded Lie algebras whose Lie algebra is equal to
s1(2) Xs1(2) Xs1{2) and whose odd subspace carries the
tensor product of the three two-dimensional representa-
tions of the algebras s1(2),

(ii) A 31-dimensional simple graded Lie algebra
whose Lie algebra is s1(2) XG, and whose odd subspace
carries the tensor product of the two-dimensional rep-
resentation of s1(2) with the seven-dimensional funda-
mental representation of G,,

(iii) A 40-dimensional simple graded Lie algebra
whose Lie algebra is s1(2) Xo(7) and whose odd subspace
carries the tensor product of the two-dimensional rep-
resentation of s1(2) with the eight-dimensional spin rep-
resentation of o(7).

Now we can formulate the main result of the present
work as follows:

Theovem 1: The simple graded Lie algebras described
in (a)—(f) constitute a complete list of all simple graded
Lie algebras whose Lie algebra is reductive.

Our proof of this theorem will depend crucially on the
general results derived in Ref. 5. Those which are
most relevant for our purpose are collected in Theorem
2.

Let a = gD nbe a graded Lie algebra with Lie algebra
g and odd subspace u . Recall that u carries a natural
representation ad, of ¢ which we call the adjoint vep-
resentation of ¢ inu .

Theovem 2: Let a =g D ube a simple graded Lie alge-
bra. Then

(a) <ﬁ’ll>:u’ <",">:8 (2.10)

and ad, is faithful.

(b) The adjoint representation ad vof § in v is com-
pletely reducible if and only if g is reductive.

In the following we suppose that the (equivalent) con-
ditions of (b) are satisfied. Then

(¢) The odd subspace u of a is either g-irreducible

or it decomposes into the direct sum
u=u'du”

2.11)

of two (nontrivial) ¢ irreducible subspaces v’ and v”
which satisfy
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(u’, uy=(u", "y ={0}

and hence (u’, u") =4 .

(2.12)

(d) Suppose that the center 8o of ¢ is nontrivial. Then
8, is one-dimensional and the representation ad, is re-
ducible. Furthermore, there exists a (unique) element
E g, such that [with the notations introduced in (c)]

(E,UNY=U" it U'cu’
<E, U'>Z—U” it U”Eu”.
3. PRELIMINARIES

In this section we shall derive some general results
on graded Lie algebras which will be needed in the fol-
lowing. It would interrupt the main line of argumentation
if we introduced them just at the places where they were
relevant.

(2.13)

The first result is connected with some trivial pro-
cess by which one can construct a new graded Lie alge-
bra from a given one. It turns out that both algebras are
isomorphic. Since we want to classify graded Lie alge-
bras up to isomorphisms, we must be aware of this
process in order to avoid a “double counting” of some
algebras. The result is described in the following
lemma.

Lemma 3.1: Leta =g@ v be a graded Lie algebra
(whose multiplication is denoted by {, )), let ¢#0 be
any element of K and let 7 be an automorphism of the
Lie algebra ¢ . Define a new graded Lie algebran'
=g @ u, whose underlying Lie algebra and odd subspace
are again respectively g¢ and u, but whose multiplica-
tion (, »’ is defined by

<G1: GZ>’: <G19 Gz)a <G’ w/: <T-1(G); w:
(U, G>,: (U; T—i(G»; <U1, Uz>,: (I/CZ)T«UU Uz))

(3.1)

if G,Gy,Gy,e g and U, U, Uycu. It is easy to see that
o’ is indeed a graded Lie algebra and that the linear
mapping

¢:a ~—a, (3.2a)
defined by
¢(G)=T7(G) if Gecg,
(3.2p)

o) =cU if Ucu,
is an isomorphism of a« onto a’.

One should note that the representations of a is the
odd subspaces of a and «a ! respectively are not neces-
sarily equivalent in spite of the fact thate and a’ are
isomorphic. The lemma shows in particular that a re-
scaling of the product mapping u Xu—~ g leads to iso-
morphic graded Lie algebras.

The rest of this section is applicable to any graded
Lie algebra« = 1 € u whose (generalized) Killing form
is nondegenerate. In fact what we need to know is that

(a) the Lie algebra s is reductive, i.e., g is the di-
rect product of its center g, with the derived algebra
¢’ ={g,9) which is semisimple;

(b) the adjoint representation ad, of 8 in u is com-
pletely reducible;
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{¢) e« has a nondegenerate bilinear form ¢ which is
even (with respect to the grading), i.e.,

o(a,u)=¢(u, 9)={0}, (3.3
which is invariant, i.e.,

P(X, ), 2)= (X, (¥, 2)) (3.9
for all X, Y,Z € o« , and which has the symmetry
properties

(b(X, Y)ZQD(Y:‘X) if X, Yegq s

(3.5)

X, V)==0(Y,X) it X,Yecu .

It is obvious that 5, and ¢’ are orthogonal with respect
to ¢, hence the restrictions of ¢ tog, and g " are non-
degenerate,

Let us choose a Cartan subalgebra i of 8. Then

lJ:QOXb’, (3.6)

where &’ is a Cartan subalgebra of the semisimple Lie
algebrag’. We conclude that the restriction of ¢ to g

is nondegenerate; consequently we can define as usual

a nondegenerate symmetric bilinear form (|) on the dual
space t* of 4 (and in particular for the weights of the
representations of a) by following procedure.

Let @<t * be a linear form on § . Then there exists
exactly one element H, € 4 such that

alH)=¢(H,, H) forallHey . (3.7
If ,Bc b * we define
(alB)= ¢(Ha, Hy) = alHy) = B(H,). (3.8)

Let us apply this formalism to the adjoint representa~
tion ad, of g inu . For any linear form «< §* we define

8¢ ={X g |(H,X)=a(H)X forall Hcs}, (3.9

we={Yeu|H, VN=al)Y forall Hes}. (3.10)
In particular we have

g'=4 . (3.11)

The linear forms @< t* withu® {0} (resp. with a+0
and ¢* #{0}) are the weights of ad, (resp. the roots of
¢ ') and we know that

a=t &P s, (3.12)
a#
u=§9u“- (3.13)

Now the restriction of ¢ to u is nondegenerate. Hence

ady is self-contragredient and - o is a weight of ady if
and only if a is a weight; furthermore, the restriction
of ¢ tou *Xu™ is nondegenerate.

Choose Xeu® and Zcu™,
(3.4) we conclude that

Then (X, Z) < ¢, and from

(X, Z), H) = a(H) (X, Z) = p(¢(X, Z)H,, H) (3.19)
for all He 5, It follows that
X, Z)=0¢(X, 2)H, (3.15)

for all Xcu®, Zcu™,

1629 J. Math. Phys., Vol. 17, No. 9, September 1976

It is now easy to derive the natural generalization of
the root-weight theorem of Ref. 4.

Suppose that @ is a weight and choose X, Y cu®;
Z cu™. Then the (generalized) Jacobi identity

X, V), 2 +{(2,X), ) +{¥,2),X)=0 (3.16)
reads, according to (3.15) and (3.10),
(X, 1), 2)=~ (a| al¢(X, 2)Y + $(Y, 2)X}. (3.17)

If (ala)#0, the right-hand side of this equation is not
identically zero. Now (X, Y)cg? for all X, Y € u®. Since
g 2® is at most one-dimensional, we conclude the
following

Lemma 3.2: Let o be a weight of ad, such that (ala)
#0. Then 2@ is a root of g and
dimu®=dimu™®=1.

A slight modification of the argument above yields the
following lemma.

Lemma 3.3: Let a, B be two weights of ad ; such that
a#+B. If (alB)#0, then 8+ @ or B— «a is a root of g .

Proof: Choose elements X cu®, Yeu™ such that
¢(X,Y)#0 and let Z be any nonzero element of u 8. Then
the Jacobi identity (3. 16) means

(Z,X), V) +{z, V), Xy = - (a|ploX, V)Z.

Since the right-hand side is nonzero, one of the elements
(Z,X) €e®* and (Z, ¥)  ¢** must be nonzero, and the
lemma follows.

(3.18)

Let us now exploit in some greater detail the fact that
¢ is reductive. We have already mentioned that ¢ = g,
x4’ where g, is the center of ¢ and &' =(3, g) is semi-
simple. Consequently ¢ decomposes into a direct
product

0=8,Xgs X"+ Xg, (3.19)
with simple Lie algebrassg;, 1si<v,

It is easy to see that theg;, 0<j<v, are mutually
orthogonal with respect to ¢, i.e.,

(8,0, =10} ifO<j<l<v, (3. 20)

Hence the restriction ¢; of ¢ tos;, 0sj<7, is non-
degenerate, In particular, we would like to stress the
important fact that ¢;, 1<i<, is a nonzero multiple
of the Killing form of g;.

It is well known that the Cartan subalgebra & "of ¢
=gy X+ -+Xg, is the direct product of Cartan subalgebras
§; of the 5;, 1<i<y, and therefore

§ =0 X by Xeo-X0,, (3.21)

For notational convenience we have defined §,=gq,.

The restrictions of ¢; to§;, 0<j <, define a non-
degenerate symmetric bilinear form ( | ); on the dual
8¥ of §; in the same way as ( | ) is defined by the re-
striction of ¢ to y.

Now §* is canonically isomorphic to §F x---X g}, that
is every element a e §* can be identified with the family
(@;)gej<r, Where «; is the restriction of e toy ;. If a
= () gej=r and B=(B;)<;<, are two elements of §*, then
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(alB)=L(%~fﬁj>i-

(3.22)

=)

In the following we shall omit the index j on ( | );, since
it will be obvious from the context which bilinear form
has to be taken.

Finally let us generalize the C theorem of Ref. 4.
We remark first that an even bilinear form ¢ on g is
invariant if and only if it is ¢ -invariant and if

¢(G, U, V)= oG, U), V) =¢((U, V), G)
forallU,Vecuand Geg .

(3.23)

To exploit this equation we suppose that we are given
two 4 -invariant g-irreducible subspaces »’ and u” of
u such that the restriction of ¢ to "X u” is nondegen-
erate. (In our applications we shall have either u = v”
=uor w'®u"=u.) Then there exist irreducible repre-
sentations p; (resp. p{) of ¢, in some spaces u; (resp.
u]), 1<i<y, such that

! ’ ? ” n n
U =u @ Qu, u o=@ Su,,

(3.24)

and such that the representation of 8’ = gy X---Xg,in
u’ (resp. u”) induced by ady is the tensor product of
the representations p,{ (resp. p}"). Since the restriction
of ¢ tou "xu” is nondegenerate there exist nondegener-
ate g;-invariant bilinear forms ¥; on u,{>< u:', 1<sisvy,
and these are determined up to a nonzero factor. More-
over, we have

UI® - @ Uy, Uy -0 U) =0 Tyy(U}, U) (3. 25)
i=1

7 7 ”n " . s
for all Ujeny, U; e u;, 1<i<y, with some nonzero
constant 0 € K.

On the other hand, there exist an element Fc g, and,
for every i, 1<i<7, a g;-invariant bilinear mapping

PiiuiXu/~g; (3. 26)

such that
(U{g -8 U, U/® - & U

=2 T g (Uy, UYY PoUL UD+@ o (U, UD) F(3.27)
i=1

i=1 R#i
forall Uje uj, Ul cu], 1<i<7.
Then Eq. (3.23) yields for 1<i<7,

¢:{(P(UL, UD), G)=09,((G,, UD, U, (3. 28)

where U;cu, Ulcu;, G,cg;, and where {(G;, U} de-
notes the action of G; on U,-' according to the representa-
tion p,f. Conversely it is easy to see that this equation
determines uniquely a bilinear g;-invariant mapping

P, ofu Xu; into g ;.

The essential fact is now that P, is fixed up to a fac-
tor, once g ; and the contragredient representations p;
and p; of g; are given, the free factor (which may de-
pend on 7) reflects the fact that ¢; and ¢, are (in advance)
only known up to a factor. Stated differently: It is evi-
dent that the tensor product of the contragredient rep-
resentations pf and p,-” contains the adjoint representa-
tion of g;, i.e,, that a nonzero g;-invariant bilinear
mapping u ; Xu; —8 ; does exist, but since the tensor
product might contain the adjoint representation more
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than once, it is important to know that we must choose
P; according to (3.28).

. ’ .
In the special case where w'= v” and u;=u;, 1<

<7, it is well known that every ¥; is either symmetric
or skew-symmetric; then from Eq. (3.28) one can easily
deduce that P; is skew-symmetric (resp. symmetric).

From now on all graded Lie algebras a = g u which
occur are supposed to be simple and to contain a reduc-
tive Lie algebra ¢ . For their classification we recall
that « satisfies one of the following three conditions
(see Theorem 2):

(a) ¢ is not simple and ad, is irreducible;

(b) s is not simple and ad, decomposes into two ir-
reducible representations;

(c) o is simple.

Our procedure will be the following: We assume that
we are given a simple graded Lie algebra a =g u of
a certain type and study the product map u Xu—g¢. This
will lead us to identities which fix the possible Lie alge-
bras ¢ and the representations ady of g in the odd sub-
space u . Apart from three exceptions it will then be
evident that the given algebra « must be one of the alge-
bras defined in (a)—(e) of Sec. 2. For the exceptional
cases our information will be sufficient to construct the
algebra o explicitly; this will be done in a subsequent
paper. 1’

4. GRADED LIE ALGEBRAS FOR WHICH ¢
SIMPLE AND ady ISIRREDUCIBLE

ISNOT

As we shall see, this class of simple graded Lie alge-
brase =g@ u is the most difficult one; in particular
the exceptional algebras are of this type. To begin with
we recall [Theorem Z(d)] that g must be semisimple.
Since we suppose that ¢ is not simple, the Lie algebra
¢ decomposes into a direct product of two semisimple
subalgebras,

8=18,X8,. 4.1

Note that we do not assume that ¢, or 4, are simple.
By assumption, the adjoint representation adu of ¢ inu
is irreducible; furthermore, ad, is faithful (since a is
simple). Hence there exist irreducible faithful repre-
sentations p; of g; in some vector spacesu,;, 7=1,2,
such that

u=u,®u, (4.2)
and such that ad, is the tensor product of p; and p,.
As we know the simplicity of « implies that
0 =C(u,uy. (4.3)

Consequently there exist for =1, 2 a nondegenerate
8;-invariant bilinear form ¥; on v ; and a nonzero g ;-
invariant bilinear mapping .

Pi:uixui"gi (4.4)
such that
(Uy® Uy, V1® V)
= 95U, Vo) Py(Uy, Vi) + 3y (Uy, V1)P,(Us, V) (4.5)
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for all Uy, Vi cuy, and U,, V, € u,y.

We would like to stress that we do not assume the
existence of a nondegenerate invariant bilinear form on
a but that the existence of the forms ¥; is a consequence
of (4.1)—(4.3). '

It is well known that ¢; is determined up to a nonzero
factor and that it is either symmetric or skew-symme-
tric. Therefore, the mappings ,, P, must be either both
symmetric or both skew-symmetric, and similarly for
&, P,; this is a consequence of the fact that the product
mapping « X u— ¢is symmetric.

We shall now exploit the Jacobi identity with three
odd elements,

(U % Uy, V& Vo), Wy W,) +cyelic=0 (4.6)
where U;, V;, W,cu,, i=1,2.
Let us introduce the abbreviation
(Ei:pi(Gi) if Gyea;. (4.7
(A) We shall first assume that
dimu; 3, i=1,2. (4.8

Inserting the expression (4. 5) into (4. 6) we see first
that there exist constants w;, o0;, T7;€ K such that

P(Uy, VW,
=wi (U, VOW, + 0,30V, WU, +7,4(Wy, UDV;

for all U, V;, W;eu,;, i=1, 2, and deduce then that
(4. 6) is fulfilled if and only if

(4.9

wy Fw,=0, 0y+7,=0, o,+7,=0, (4. 10)

’

Now the bilinear forms ¢; are g;~invariant. In particu-
lar we must have

Zf//'i(ﬁi(Ui’ VW, W) + (W, I;i(Ui, VoWw)=0 (4.11)

for all U;, V;, W;, W,c u;, i=1,2. With (4.9) this con-
dition is fulfilled if and only if

w;=0, o;+7,=0, i=1,2, (4.12)

As a consequence of (4.12) the mapping P; is symmetric
(resp. skew-symmetric) if and only if ¥; is skew-
symmetric (resp. symmetric).

Collecting our results we have shown that

Py(Uy, VoW, = o {9,(Vy, WU, = 9,(W,, UD V) (4.13)

forall U;, V,, W;c u,;, i=1, 2, with some nonzero con-
stant o€ K, and, furthermore, that one of the ¥; is
symmetric, the other skew-symmetric.

Without loss of generality we may assume that ¢y is
skew-symmetric and that ¢, is symmetric. It is then
easy to see that the linear mappings P,(U,, V;); U,

Vic uy, £=1, resp. i=2, generate a subspace of gl(u;)
(the general linear Lie algebra of v ;) which is equal to
the symplectic Lie algebra sp(#;) [resp. to the ortho-
gonal Lie algebra o) |.

Now we know that y; is 0;-invariant and that the rep-
resentation p; of 3; in u; is faithful. Therefore, p,
(resp. p,) is an isomorphism of g, (resp. g,) onto the
symplectic Lie algebra sp(¢;) [resp. onto the orthogonal
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Lie algebra o(¢,)]. Obviously, under this isomorphism
the representation p, (resp. p,) corresponds to the ele-
mentary representation of sp(dy) [resp. of o{ty)].

Furthermore, according to (4.5) and (4. 13), the pro-
duct mapping 1 Xu—~ ¢ is determined up to a factor o.
In view of Lemma 3.1 we have thus shown that o« must
be isomorphic to an orthosymplectic graded Lie algebra
osp(2p, m) with p= 2, m = 3.

(B) Let us now consider the case where the condition
(4. 8) is not fulfilled. Since the representation p; of g;
in u; is faithful we conclude that (at least) one of the
spaces u; is two-dimensional and that the corresponding
Lie algebra g; is isomorphic to s1(2).

Without loss of generality we may assume that
9= SI(Z),

and that p, is the elementary representation of s1(2). It
is well known that there exists a nondegenerate skew-
symmetric invariant bilinear form ¥y on u; and a non-
zero invariant bilinear mapping

dimu; =2, (4.14)

Py:ugXuy—4ay. (4.15a)
Both ¢ and P; are unigue up to a factor, in particular
Py(Uy, V)W, = a{uy(Vy, W)Uy = 44 (Wy, U Vi), (4.15b)

where U, V;, Wy € u; and where ¢; € K is some nonzero
constant.

Therefore, the mappings ¥, and P, in (4.5) are already
known. We conclude that ¢, (resp. P,) must be symme-
tric {resp. skew-symmetric) and hence that p, must be
an orthogonal representation.

It is now easy to see that (4. 6) is fulfilled if and only
if
ﬁz(Uz, Vo) Wy ~ Py(Vy, Wo)Up = 0185(Uy, V)W, = 0135(Vy, W)Uy
+2019,(Wp, Up) V=0 (4.16)

for all U,, V,, W, cu,. This condition can be rephrased
by demanding that the trilinear mapping

Py:u,Xu, uy—~u,, (4.17a)

defined by
ﬁz(Uz, Vy, W)
:ﬁa(Uz’ Vo) Wy = of{ 8V, W)U, - Yo (Wy, Up Vi,
(4.170)
should be totally skew-symmetric.

If P,=0 then we are back at (4.13) and we can con-
clude as in (A) that o must be isomorphic to an ortho-
symplectic graded Lie algebra osp(2, m), m > 3. But it
turns out that P, is not necessarily equal to zero.
Nevertheless if dimu, <3, then evidently 132 =0,

Now s1(2) Xs1(2) = o(4) is the only semisimple Lie alge-
bra which has a faithful irreducible orthogonal repre-
sentation of dimension four. In this case we cannot con-
clude that P,=0; in fact it will turn out that this case
leads to a one-parameter family of exceptional simple
graded Lie algebras.

For the rest of part (B) we may assume that
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dimu,> 5 (4.18)

and that g , is simple [the case in which g, is not simple
leads back to (A)].

To proceed we show first that the Killing form ¢, of
a is nondegenerate. In fact, it is sufficient to prove that
¢, is not identically zero, and this follows from the
equation

!

¢q (Gy, G1):§(4—dim“2)¢’gl(c1, G1,) (4.19)

for all Gy, G{ € 8; =sl(2), where ¢g, is the Killing form
of the Lie algebra 3,.

Hence we are free to apply all the results of Sec. 3.
Let us first answer the question of uniqueness.

Lemma 4. 1: Suppose that we are given a simple Lie
algebra g, and a faithful irreducible orthogonal repre-
sentation p, of g, in some vector space u, with dimu,
=5, Then there is up to isomorphism at most one sim-
ple graded Lie algebraa =g u with Lie algebra g
=sl(2)X 8, and odd subspace u =u,® u, such that ady is
equal to the tensor product of p; and p,.

Proof: In fact, from (3.28) we know that P, is fixed
up to a factor and (4. 17b) is totally skew-symmetric for
at most one choice of this factor (since the curly bracket
is not totally skew-symmetric). Therefore, our asser-
tion follows from Lemma 3.1.

To find out which simple Lie algebras ¢, and repre-
sentations p, of g, are really possible we use the nota-
tion and results concerning the roots and weights as de-
scribed in Sec. 3.

Let 1 be one of the two weights of the representation
py. Then the weights of ad,, are exactly the linear forms
of the type &= (+ u, @) where & is a weight of the rep-
resentation p, of g,. We normalize the even invariant
bilinear form ¢ on a such that

(p)y=~1. (4.20)

If @+#0, then 2 is certainly not a root of ¢ and Lemma
3.2 shows that (ala)=0, i.e.,

(&l @) =1. (4.21)
Hence we have proved Lemma 4. 2.

Lemma 4.2: The restriction of ¢ to g, is a positive
multiple of the Killing form of g ,. All nonzero weights
of p, have the same length.

To proceed we distinguish two cases depending on
whether zero is a weight of p, or not.

A. Zero is a weight of p,

In this case, (+ i, 0) are weights of ady and Lemma
3.2 shows that these weights are simple. Hence the
weight 0 of p, must be simple, too.

According to Table I of Appendix B the Lie algebra
9, must be isomorphic to one of the algebras

Ay, B, n=2, G,
and p, must be the elementary representation except in

the case ¢,=A,; where p, is the adjoint representation.
The possibility 8,=A; =sl(2) has already been treated.
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Consider next the case g,=B,=0(2rn +1). The Lie alge-
bra of the orthosymplectic graded Lie algebra osp(2, 2n
+1), n=2, is equal to sl(2) Xo(2xn +1) and the corre-
sponding representation p, is equal to the (orthogonal)
elementary representation of o(2n +1). According to
Lemma 4.1 our graded Lie algebra a must, therefore,
be isomorphic to osp(2, 2n +1).

Finally, the seven-dimensional elementary represen-
tation of G, is orthogonal; hence G, and this represen-
tation are possible candidates for g, and p,. In fact, we
shall show that there is indeed an (exceptional) simple
graded Lie algebra for which g =sl(2) XG, and such that
P, is the seven-dimensional representation of G,.

B. Zero is not a weight of p,

In this case we need some additional information on
the weights of p,. Let @, B be two weights of p,. Then

a=(u, &), B=(L B (4.22)
are two weights of ady and
(a]B)=(u|m+(a|p=~1+(ald). (4.23)

Because of (4.21) this is zero if and only if a=f§. Hence
if @+ B then a+8 is not a root of 8 and using Lemma
3.3 we conclude that o~ 8= (0, & - 8) must be a root of
g, 1.e., we have shown the following lemma.

Lemma 4, 3: It (;, B are two weights of p, such that
a#+B then - B is a root of g ,.

Corollary: Suppose that 07, g are two weights of p,.

(D) If 0o, is one of the-algebras A,, n=1; D,, m = 3;
E, 6<p<8, then (¢|B)=0,+1.

(ID If o, is one of the algebras B,, C,, n=>2; F,,
then (a|B)=0,+3%,+1.

(IID) ¥ 6¢,=G,, then (a1B)=0,+%,+1.

froof: The representation p, is orthogonal, hence
—~B is a weight if and only if 8 is a weight.

If @=2+f, then (a!B)==1 because of (4.21).

Suppose now that a#+f. Then &ié are roots of g,.
In Case (Il all roots of ¢, have the same length which
implies (a(8)=0. In Case (II) [resp. (III)] the two roots
&'+ either have the same length, which implies (a{f)
=0, or the squares of their lengths differ by a factor of
2 (resp. 3), which implies (aiB)=+7 (resp. {(@I1f)==3).

We are now ready to proceed with our classification.
Let us first look for all simple Lie agebras g, and all
faithful irreducible orthogonal representations p, of 3,
such that all weights of p, have the same length, From
Table II of Appendix B we know that there exist the fol-
lowing possibilities:

32 Pz

A, PNy 72) n=4m-1;, m=12, ---,

B, p(x,) n=4m-1orn=4m; m=1,2, ...
D, p(N) n=23,4,5,++,
P(Ma),  p(X,) n=4nm; m=1,2,---,
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We consider these cases separately.

Case A,: One can prove that part (I) of the corollary
rules out all algebras A, except A;. Now 4, is isomor-
phic to D, and the representation p(},) of A, corresponds
to the representation p(}) of D,. Hence we can drop A,
in favor of D,.

Case b,: 1t is easy to see that the spin representation
p(\,) of B, satisfies the condition of part (II) in the corol-
lary, only if #=3. Hence we are left with

g ,=B,;=o0(7) and p,=p(};) =spin representation.

We shall show that this possibility indeed corresponds
to an (exceptional) simple graded Lie algebra.

Case D,: The choice p,=p(),) leads (because of Lem-
ma 4. 1) to the orthosymplectic algebras osp(2, 2n),
n=z= 3, Part (I} of the corollary rules out the representa-
tions p(A,4) and p(},) except in the case n=4, but the
representations p(), p(%,), p(%,) of D, are connected
by automorphisms of D,. Because of Lemmas 3.1 and
4.1 the simple graded Lie algebras corresponding to
p(x;) and p(1,) are isomorphic to that constructed with
p(N), i.e., to osp(2, 8); consequently they must not be
mentioned separately.

5. ¢ IS NOT SIMPLE AND ady DECOMPOSES INTO
TWO IRREDUCIBLE REPRESENTATIONS

In this section we consider simple graded Lie alge-
bras « =g ® u for which g is reductive but not simple
and for which u decomposes into the direct sum of two
g-irreducible subspaces u’ and u”,

u=u'®&u”, (5.1)
It follows that
(o', Wy = " ={o), (o', Wy=4. (5.2)

We know that s is the direct product of its center g, and
of the semisimple Lie algebra g¢'=(g, ¢). Furthermore,

(5.3)

If dimg,=1, then the Killing form of « is nondegener-
ate and there exists an element £ € g, such that

(B, UY=U" iU ey,
(E,U™=-U" if U"cu

dim go‘g 1.

” (5.4

By using the irreducibility of ' and u" as well as (5.2)
and (5.4) it is easy to see that g cannot be Abelian,
i.e., that the semisimple factor ¢’ of g cannot be equal

to {0}

In the following we shall distinguish two cases de-
pending on whether q’ is simple or not. In the former
case we have go¢{0} according to the general assump-
tions of this section.

A. g'is not simple
In this case ¢ decomposes into a direct product
8= goX 61X gy, (5.5)

where the Lie algebras g, and 4, are semisimple (and
different from {0}) and where g, is the center of g
(which may be equal to {0}).
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The representations p’ (resp. p”) of 8;X g, in v’
(resp. u") induced by the adjoint representation ad, of
g in u are irreducible. Hence there exist irreducible
representations p; (resp. p;) of ¢; in some vector
spaces u; (resp. u;), ¢=1,2, such that

(5.8)

and such that p’ (resp. p*) is the tensor product of the
representations pl' and pé (resp. of p; and p;’).

! ? 7 ” n n
W=u,® U, W= u ® u,

Because of {u’, uv")= g there exists for =1, 2 a non-
degenerate g ;-invariant bilinear form ¥; on ujXu;
(which is uniquely determined up to a nonzero factor)
and a nonzero g;-invariant bilinear mapping

PiiuiX u ~g; (5.7
such that
(vy® U;, Uy ® Uy )

= 4,(Us, UNP(UL, UY) + 3, (U, U YP,(Us, UY) (5.8)

+ 45 (U, UD)Yp(Uy, Up)F
for all Ui € u;, Ujcuy, Ul cuy, Ujc u,. Here Fis a
suitable element of 8, which is nonzero if g(,#{O}. It
will be useful to define the number n< K by

it g,={0},
F=nE if gs,#{0},

n=0
{(5.9)

where E € 8, is the element described in (5.4). Then
n=0 if and only if g,={0}.

The existence of the bilinear forms ¥; means that the
represerntations p; and p,f' are contragredient with re-
spect to each other, ¢=1, 2. Since ad, is faithful, we
conclude that all the four representations p,f, p{' must
be faithful, too.

Let us introduce the abbreviations

G\ =pl(G,), Gr=p!"G, if G,c s, (5.10)

We shall once again exploit the Jacobi identity for three
odd elements. Taking two eléments from ' and one
element from u” this identity reads
(u® v, U'e Uy), U;® Uy)

+{(U1® Uy, U® Uy), Uf® Up)=0 (5.11)

for all

"

! T3 ? ' rr! ! » n
Uy, Uyevy, U, U,eu, U cup,

Uél € uy,.
Inserting the expression (5.8) into (5.11), we see
first that there exist constants ¢;, 7; < K such that
P, UNT; = ogu(U, UNT; + 70401, UNHU,  (5.12)

7 n

for all U;, Ujeu], Ui < uj, i=1,2; then we deduce that
(5.11) is fulfilled if and only if

01+Uz+n:0, 71+Tz= (5'13)

Now the bilinear forms #; are g8;-invariant; in particular

we must have
B(P(UL, UNTL, T + (T4, I, UNTH =0 (5.14)

for all U,f, [7:6 u.;’, U,-”, 17{'6 u,f', which implies
P{(UL, UNTY = - ou(U;, UNT] = T0,(U;, TUNHUY (5. 15)
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it Ujc u}, U, Ucu/. The Jacobi identity for one ele-

ment of u’ and two elements of u” is then automatically
satisfied as a consequence of (5.13).

Let us now recall that the images of the elements of
a semisimple Lie algebra under any finite-dimensional
representation are traceless. Hence we must have

TrP(U}, U{)=0 (5.16)

for all U{G u,{, U{'e u,f', =1, 2, and similarly for ﬁ{'.

If we define for i=1,2

n; =dim u; =dimu;, (5.17)
then our trace condition is equivalent to
o, +7,=0, i=1,2. (5.18)

Considering the dimensions #; and 7, as fixed, we can
rephrase (5.13) and (5. 18) by demanding that there exist
a nonzero constant 7 < K such that

=T/, Ty=-=T,

Op==T/Hy, T,=T (5.19)
Hy=n

:————-—1 27'
1y,

Note that =0 if and only if #; = n,.

_ It is now easy to show that the linear mappings
P{U;,U}), Uie ui, U cui generate a subspace of

gl(u;) which is equal to the special linear Lie algebra
sl{u;) of uj. Since the representation p; is faithful, we
conclude that p; is an isomorphism of ¢; onto sl(u;)
~gl(n;). Obviously under this isomorphism the represen-
tation pﬁ corresponds to the elementary representation

of sl(u;).

Furthermore, according to (5.8), (5.12), (5.15), and
(5.19) the product mapping uXu—g is determined up to
the factor 7. In view of Lemma 3.1 we have thus shown
that « must be isomorphic to the special linear graded
Lie algebra spl(nm, n,) if ny #n, and to spl(n, m)/z, [with
z, the one-dimensional center of spl{n;, n,)] if 7, =n,.
Note that our assumptions imply #,, n,> 2.

B. g'is simple
In this case g decomposes into a direct product

§= Gox 8y, (520)

where g, is the one-dimensional center of g and where
the Lie algebra g, is simple.

The Killing form of a« is nondegenerate, hence we may
use the conventions and results of Sec. 3. We normalize
the even invariant bilinear form ¢ on a (which is pro-
portional to the Killing form) by the condition

G(E,E)=-1, (5.21)

where E < g, has been defined in (5. 4).

Let o' (resp. p”) be the representation of 4, in u’
{(resp. u”) induced by ady . The restriction of ¢ to u’
x u” ig nondegenerate, hence p' and p" are contragre-
dient with respect to each other. Furthermore, since
ady is faithful we conclude that p’ and p” must be faith-
ful too.
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We shall now first settle the question of uniqueness.
Our argument will be completely analogous to that used
to prove Lemma 4. 1. Define the nondegenerate g,-
invariant bilinear form ¥, on v’ X v” and the nonzero g1~
invariant bilinear mapping

Pyvxw g, (5.22)
by the equation
W', u"=pPU', U +y, (U, UNE (5.23)
for all U'e o', U"c v”,
Let us introduce the abbreviations
G{=p'(Gy), G{=p"(Gy) if Gye q,. (5.24)

Then the Jacobi identity with two elements from »’ and
one element from u” is equivalent to the condition that
the expression

Qu', U™y, oy =PI, U’ +w(U', U o' (5.25)

should be skew-symmetric in U', U'c v for all fixed
U” e u". Since (U’ U")U’ is certainly not skew-sym-
metric in U', U’, we conclude from (3.28) and the con-
dition above that the product mapping uXu—~¢ is fixed
up to a factor once the simple Lie algebra 8; and the
two (contragredient) representations p’ and p” are given.

In view of Lemma 3.1 we have thus shown the follow-
ing lemma.

Lemma 5. 1: Suppose that we are given a simple Lie
algebra g, and two faithful irreducible representations
p' and p” of ¢, in some vector spaces ' (resp. ")
which are contragredient with respect to each other.
Then there is up to isomorphism at most one simple
graded Lie algebra o with Lie algebra ¢ = §;x 8, and
odd subspace u= u'd u', such that the restriction of
ad, to g; is equal to the direct sum of p” and p” and such
that g, acts on u as described in (5. 4).

Let us now discuss the weights of ad,, the adjoint
representation of g in u. Recall that o’ and p” are con-
tragredient with respect to each other. Hence & is a
weight of p” if and only if — & is a weight of p”.

Define v to be the linear form on g, such that

Then the weights of the representation ady. (resp. ady.)
of s induced by ady in ' (resp. u") are exactly the lin-
ear forms of the type a= (v, @) [resp. — a=(-v, - @)},
where @ is a weight of P

Evidentily 2« is not a root of g, hence (Lemma 3.2)

(ala)=0. (5.27)
But Eq. (5.21) implies

(vl =-1. (5.28)
Hence we conclude

(olay=1 (5.29)

and we have proved Lemma 5. 2.

Lemma 5.2: The restriction of ¢ to 84 is a positive
multiple of the Killing form of ¢,. All weights of p’ have
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the same length, in particular zero is not a weight of
p.

As a consequence of Lemma 3.3 we derive Lemma
5.3.

Lemma 5.3: Xf &, B are two different weights of p’
then @ - B is a root of ;.

Pyoof: Define the following weights of ady. by

a=(v,a), B=(,P. (5. 30)
Then
(a]®)=w|v) +(@|B=-1+(a|8). (5.31)

Because of (5.29) this expression is zero if and only if
a= B which is not the case. Furthermore, & +3

=(2v, oz+B) is not a root of 3, hence (Lemma 3.3) -3
=(0, a- 8) must be a root of ¢, as desired.

Corollary: Suppose that ¢, is one of the algebras B,
Cwm n2z22, Fy. I a, B are two weights of p’ such that
a++f, then (&1B) =

Pyoof: 1t is well known that the representations of the
algebras B,, C,, F, are self-contragredient. Hence if
& is a weight of p’ then - & is also a weight. According
to Lemma 5.3 it is evident that 2@ must be a long root
of 8, and & - B must be a short root, i.e., we must
have

@a|2a)=2(a~8|a-B). (5.32)
This implies

(«|B) = (5.33)
as desired.

Let us now proceed with our classification. We shall
distinguish two cases depending on whether the roots of
g, have all the same length or not.

{al 8, has roots of different length

According to Lemma 5.2 and to Table II in Appendix
B we have the following possibilities for g; and its rep-
resentation p:

e]. p’y
B, o(), n>2.
cn p(}\l))

The algebras B, with » > 3 are ruled out by the corollary.

Furthermore, B, is isomorphic to C, and the represen-
tation p(%,) of B, corresponds to the representation p())
of C,. Hence we may drop B, in favor of C, and we are
left with
4,=C,, p =p())=elementary representation,
where n > 2.

It is now evident from Lemma 5.1 that ¢ must be
isomorphic to the orthosymplectic graded Lie algebra
osp(2n, 2).

(b) All roots of g, have the same length

In this case, too, we could use Appendix B to cbtain
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severe restrictions on g, and p', but we prefer to argue
more directly.

In fact, according to our assumptions and to Lemma
5.3 there exists a constant we K, w#0, such that

(&d-B|&-B)=- 2,
i.e.,

(@[f)=1+w

(5. 34)

(5.35)

It follows that
(5. 36)

if &,E are two different weights of p’.
(@|p)=-1+(@|p)=w

if a=(v, @) and B={(v, B) are two different weights of
ad,..

Suppose now that @, 8, ¥ are three weights of ady,. and
choose arbitrary elements

Ube o', Uhe ' nu® Ujc Ny (5.37
[see (3.10)]. Then

(Us, U, Upy e v’ =", (5.38)
If B+a,v then

(@=B+v|a=B+Y=2(a|y) -4w+#0 (5.39)
and hence [because of (5.27)]

(s, Uy, Uy =0. (5.40)
On the other hand [see (3.15)],

(U, UL, Uy = (@] N§(Us, UL,

(5.41)

(UL, U, Uy == (a|no(uy, U U,.

Using (5.27) and (5. 36) the Eqgs. (5.40) and (5.41) can
be combined to give the general result

(UL, U, Upy=w{o(Us, U, - ¢(U,, U UL (5.42)

for all weights @, B, v of ad,,, i.e., we have

(U, Uy, 0y =wf{eU, UNT - (U, UNU'}  (5.43)
forall U', U’ e v and U"e v,
It is now easy to see that the linear mappings
U =wl{oW, uHU -, uHu'} (5.44)

from ' into itself, with U <’ and U” ¢ »”, generate
gl(v) as a vector space. Since ady. is faithful, we con-
clude that ad,;. is an isomorphism of ¢ onto the general
linear Lie algebra gl{ u’). Using Lemma 5.1 it follows
that ¢« must be isomorphic to a special linear graded
Lie algebra spl(n, 1) with n> 2,

6. g ISSIMPLE

We shall now consider simple graded Lie algebras
a=g® u whose Lie algebra 1 is simple.

Let us begin with a remark on the invariant bilinear
forms on a Lie algebra g. As is well known, with any
representation p of 8 there is associated an invariant
bilinear form ¢, on ¢ defined by
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?,(G, Gy =Tr(p(G)p(G")) (6.1)

ifG,G e, Taking for p the adjoint representation of
3 we obtain the Killing form ¢4 of g .

Suppose now that ¢ is simple. Then all invariant bi-
linear forms on ¢ are proportional, hence for every
representation p of g there exists an element /, € K such
that

¢a:lp¢g . (6.2)

The number [/, is called the index of the representation
p. It is easy to see that [, is a positive rational number
which is nonzero if p is faithful, If p is the direct sum
of the subrepresentations p, and p, then, obviously, [,
=1, +1,,; hence it is sufficient to calculate [, for the
irreducible representations of ¢ . In fact one can derive
a formula'? which gives the index [, of an irreducible
representation p in terms of the highest weight of p.

Let us apply these results to our graded Lie algebra
a. If ¢o 1is the (generalized) Killing form of a, if ¢g
is the Killing form of ¢ , and if ¢y is the invariant bi-
linear form on ¢ associated with the adjoint represen-
tation ad w of ¢ in u, then

$,(G,G") =4(G,G") - $,(G, G")
for all G, G’ ¢ q.

(6.3)

Now assume in addition that ¢ is simple. Let [, be
the index of ad,. Then (6.2) and (6. 3) yield

0 (G, G)=(1~1y)¢g(G, G")
forall G,G e g.

(6.4)

It is known® that an invariant bilinear form on a sim-
ple graded Lie algebra is either nondegenerate or zero.
Hence for the algebras a which we consider in this sec-
tion we have either I3 #1 and the Killing form ¢, is non-
degenerate, or else we have {,=1 and the Killing form
¢, 1s zero. We shall discuss both cases separately.

A. The Killing form of a is nondegenerate. /;; # 1

This class of graded Lie algebras has been treated in
Ref. 4. But since, with the results at hand, it is easy
to settle this case, we include it for completeness.

In fact, because of (6.4) we conclude from Lemma
3.2 that every nonzero weight of ad, is half a root of
g and that all these weights are simple. Using LLemma
C. 1 of Appendix C it is then easy to see that 3 must be
isomorphic to some algebra C,, n>1, and that ad, must
be irreducible and equivalent to the elementary repre-
sentation p(},) of C,. Finally we deduce from (3.28) and
Lemma 3.1 that « must be isomorphic to the orthosym-
plectic graded Lie algebra osp(2n, 1).

B. The Killing form of a is zero, /yy =1

It is appropriate to distinguish two cases depending
on whether u is irreducible or not.

(a) w fs irreducible

Since /; =1 we conclude from Appendix D that ady is
equivalent to the adjoint representation of g. In order
to define the (symmetric) product mapping uX u— g we
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answer the following question: Let ady be the adjoint
representation of the (simple) Lie algebra g . Is adq
contained in the symmetric tensor product of ad; with
itself ?

It turns out'® that this is the case if and only if ¢ is
one of the algebras A,, n=> 2, and in this case the sym-
metric tensor product of ady with itself contains adg
only once. According to Lemma 3.1 it is now evident
that « must be isomorphic to the (f, d) algebra d(n+1)/
2,4 of Gell-Mann, Michel, and Radicati. We note that
this result can also be derived without using the results
of Ref. 13; instead one may take advantage of the Jacobi
identity for three odd elements.

{b) u is reducible

In this case we know that « decomposes into the direct
sum of two g-irreducible subspaces v’ and u”,
v=u'Hu”, (6.5)
Let ady, (resp. adu.) be the representation of g in u’
(resp. u ") induced by ad,, and let !’ (resp. I”) be its in-
dex. According to our assumption, we have

'+1"=1, (6.6)

Since a is simple we know that (g, u)= u; hence ad,,
and adyw are nontrivial, which implies ’,1" #0,

Now we are faced with the following problem: Suppose
we are given a simple Lie algebra g . Find all pairs of
faithful irreducible representations of ¢ the sum of
whose indices is equal to one.

In the following we discuss all simple Lie algebras
separately. Using Table III of Appendix D we give all
“admissible pairs” of irreducible representations and
discuss which of these pairs lead to a simple graded
Lie algebra.

Case A,, n=1: This case is the most complicated one.

Admissible pairs of representations:

(M p2n), e n>2,
2 pn),  p(A); n=2,
1) p2A),  p(Ag); =2,
2 p2r),  p(); n=2,
(3 ey, P(Ag); n=75,
@ P, P(Xy); n=1,
(5)  o(n), p(Xg); n=1,
@) p0), oA —
(5" p(ry), p(Ay); —y

The “primed” possibilities are connected with the non-
primed possibilities by an automorphism of 4,. In view
of Lemma 3.1 the primed cases may, therefore, be
omitted.

(1) The tensor product of p(2)) with p(A,_4) contains
the adjoint representation of A, exactly once. In view
of Lemma 3.1 it is then clear that the corresponding
graded Lie algebra is isomorphic to d(n +1).
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(2) We may assume n# 3 since the case n=3 is in-
cluded in (1). Then the tensor product of p(2X) with
p(*,) does not contain the adjoint representation, hence
this case does not lead to a simple graded Lie algebra.

(3) The tensor product of p(»,;) with itself contains the
adjoint representation exactly once, namely in the sym-
metric part. The latter property implies that the cor-
responding product mapping uXu —g does not lead to
a simple graded Lie algebra.

(4), (5) The tensor product of p(},) with p(};} or with
p(A;) does not contain the adjoint representation, hence
these cases do not lead to a simple graded Lie algebra.

Case C,, n=> 2: Admissible pair of representations:
P(x),  p(Xy);

The tensor product of p(};) with itself contains the ad-
joint representation exactly once, namely in the skew-
symmetric part. How to define the representation o(},)
in tensor space is well known, and it is then straight-
forward to construct the candidate for the product map-
ping u X u~ g, Once this has been done it is easy to see
that the Jacobi identity for three odd elements is not
satisfied.

n=3.

Cases B,, n=23; D,, m=>4; E, E,, E;,, F,, G,: No
admissible pairs of representations.

Summarizing the results of this subsection we have
shown that only the algebras b(n), n> 3, belong to case
(B), M.

APPENDIX A

In the appendices we collect our notational conven-
tions concerning simple Lie algebras and we discuss
some classes of irreducible representations with “low
dimensions. ” Our notation is mainly that of Tits'%; for
our calculations we have made use also of the results
collected in the appendices of the treatises by Freuden-
thal, de Vries, ! and by Bourbaki.'®

Let 8 be a simple Lie algebra and let § be a Cartan
subalgebra of g . Choose any nondegenerate invariant
bilinear form on g {(all these forms are proportional).
By restriction it induces a nondegenerate bilinear form
on ¢ and, consequently, also a nondegenerate bilinear
form on the dual space %* of § . The bilinear form on
b * will be denoted by a bracket ( | ).

The roots of ¢ as well as the weights of the represen-
tations of g are elements of #*. Let us choose a funda-
mental system of simple roots oy, ..., &,. Then the fun-
damental weights A, ..., A, are defined by

2%:6”. (A1)

Any (finite-dimensional) irreducible representation
of ¢ is characterized (up to equivalence) by its highest

weight. An element X ¢ §* is the highest weight of a finite-

dimensional irreducible representation of a4 if and only
if it has the form

)\:ZJ CiAi (AZ)
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with integers ¢; = 0. The corresponding irreducible rep-
resentation will be denoted by p(}).

Unfortunately there seems to be no generally accepted
enumeration of the vertices in the Dynkin diagrams (and
hence of the simple roots and of the fundamental weights).
Therefore, we have to specify our convention as in Fig,.
1, We remark that the arrow points towards the short
roots.

The representation p(\) is called elementary. In the
cases of the Lie algebras A,, B,, C,, D, this is just the
matrix representation by which the algebra is usually
defined.

Suppose we are given an irreducible representation
pof g . If pis equivalent to its contragredient represen-
tation then we call p self-contvagredient. This is the
case if and only if there exists a nondegenerate invari-
ant bilinear form ¥ on the representation space of p. It
is well known that ¢ (if it exists) is uniquely determined
up to a nonzero factor; in particular ¥ is either symme-
tric or skew-symmetric. In the former (resp. latter)
case the representation p is called ovthogonal (resp.
symplectic).

APPENDIX B

We discuss some classes of representations with low
dimensions. We are well aware of the fact that the re-
sults to be derived in the following should be contained
somewhere in the mathematical literature.

Let g be any simple Lie algebra. We want to find all
irreducible representations of g whose nonzero weights
have all the same length.

Let p be any nontrivial representation of this type. If
u+#0 is a weight of p and if @ is a root of g such that
4 — « is a nonzero weight of p, then

Ay nsd

o -

1 2 3 n-2 n-1 n
Bn.n>2 S >

1 2 3 n-2 n-1 n
Ch.n3»2

1 2 3 n-2 a-1 n

n

Un,n" 3 o——0——0 - - .- .

1 2 3 n-3 n-2

n-1
]6
E -
s ) 2 3 4 S
I?
3
7 1 2 3 4 5 [
IB

& v 2 3 4 5 6 7
F o———teo—0
¢ 1 2 3 4
[;2 ==

1 2
FIG. 1.
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TABLE 1. Irreducible representations of simple Lie algebras
which have zero as a weight and whose nonzero weights have
all the same length,

algebra representation multiplicity of
weight 0

A, nzl pa+A) n

B,, nz2 pOyp 1

C,, n>2 pBy) n~1

D, n=4 p () n

E, pAg) 6

Ey p(Ag 7

£y 4 0‘1) 8

Fy oAy 2

G, p(Ay) 1

All representations appearing in this table are orthogonal.

(p=alp-ay=(uln (BY)
and, therefore,
_ (ula)
,J'_a’“p'—z(a[a)a“sa(p’), (BZ)

where S, is the Weyl reflection defined by the root a.
Now we have the following well-known lemma.

Lemma B.1: (a) The Weyl group operates transitively
on the roots of equal length.

(b) The Weyl group permutes the weights of any rep-
resentation of g.

{c) I two weights of a representation of g are con-
nected by a Weyl transformation, then the corresponding
weight-spaces have the same dimension.

Using this lemma as well as (B2) and the fact that p
is irreducible one can prove the following lemma.

Lemma B.2: The Weyl group operates transitively on
the nonzero weights of p, in partiuclar all these weights
are simple,

We shall now distinguish two cases depending on
whether 0 is a weight of p or not.

Let us suppose first that 0 is a weight of p. Using the
irreducibility of p as well as Lemmas B.land B. 2 we de-
duce that the nonzero weights of p are exactly the short
roots of g. By this property the representation p is uni-
quely fixed, and it is then easy to check that there in-
deed exists an irreducible representation with the de-
sired properties,

Table I gives for every simple Lie algebra the (uni-
quely determined) nontrivial irreducible representation
which has 0 as a weight and whose nonzero weights have
all the same length. In the case of the algebras A,, D,
E, this representation is of course the adjoint represen-
tation. In Table I all representations are orthogonal.

We next consider the case where 0 is not a weight of
p. Let A be the highest weight of p,

n
)\:Z} Ci)\i (B3)
i=1

with integers ¢; > 0.

If @ is any positive root of 9 then A+ @ is not a weight
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of p. Using the well-known formula for the a-ladder
through a weight it is easy to see that

(Al @) =0 if A~ « is not a weight,

2(7\\ a)=(a‘ a) if A - a is a weight. (B4)
The positive root @ can be expressed in the form
n
a=2, m;a; (B5)
=1

with suitable integers m; = 0; consequently we deduce

from (A1), (B3), and (B5) that
I

2(A}oz):Z1 cim(ay| ay). (B6)

=

The positive roots @, i.e., the allowed n-tuples

(my, ..., m,), may be taken from Refs. 14-16. For

every simple Lie algebra g there exisis a positive root

for which the condition (B4) is most stringent; in fact

this is just the root which is the highest weight of the

representation given in Table I. The condition which we

obtain in this way means that p must be equal to one of

the representations given in Table II. Conversely one

can prove that the weights of the representations given

in this table indeed do have the same length.

In the last column of Table II we describe which of the
representations are self-contragredient and, if this is
the case, whether they are orthogonal or symplectic.'*

APPENDIX C

As a by-product of Appendix B we prove the following
lemma.

Lemma C,1: Let g be a simple Lie algebra and let p
be a nontrivial irreducible representation of ¢ whose
nonzero weights are equal to half a root of ¢ . Theng¢ is
isomorphic to some algebra C,, n> 1, and the represen-
tation p is equivalent to the elementary representation

().

Proof: Since p is irreducible and since the double of a

TABLE II. Irreducible representations of simple Lie algehras
whose roots have all the same length.

algebra representation type of representation
if self-contragredient
A, nz1 phy), l<isn P X gtyse) 18
orthog. if n-4m -1
sympl, if n=4m +1
-1
B, n=z2 pir,) orthog. if n= ;lm
m
sympl, if » am+l
yrmpl. dm+2
C,, nz2 phy) symplectic
D, n=3 p®y) orthogonal
P, s PO orthog. if n=4m
sympl. if n=4m +2
Eg o), ol *
E, o) symplectic
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TABLE IIL Irreducible representations of simple Lie algebras

whose index is (strictly) smaller than 1.

algebra  condition on representation  index
the rank
1
A, nz1 o), o0 oD
> n+3
nz 2 p@ry), pA) T D
n—1
nz2 pa), ph,y) e 1)
-1)(n —-2)
3€n<T phg), oy, %
1
B, nz2 p(y) TooT
zn-3
< p<
2€ < 6 pi,) =1
1
Cn n= 2 pO\i) m
-1
nz3 o) :_+1_
_ 1 2n
n=2,3 i) 2n+1) (n—l)
1
D" nz4 p(}\l) m
on=5
4<n<T D(Aﬂ_o, 005,) 1
Eg o), pg) 1
E7 p(?\i) ‘;lj
F4 p(?\l) ’11;‘
Gy o) 3

root of g is not a root we see that 0 cannot be a weight
of p.

Next it is easy to see that at most one of the linear
forms za;, 1<j<n, canbe a weight of p. In fact, sup-
pose that 1<j, k< n and that 3o, and 30, are weights
of p. Since p is irreducible there exist integers #;, 1<
<n, such that

_"\
o =sa;+ 0 oy, (c1)
i1

which implies j=4%.

Combining this result with Lemma B. 1 it is easy to
see that all weights of p have the same length. What we
have shown implies (in view of Lemma B.1 and of Table
ID that there remain the following possibilities for g
and p (up to isomorphism and equivalence)

8 P,

A p(M),
B,,n=2 (A,
C,on=2 p(X).

The cases B, with n> 3 have to be excluded since 2%, is
not a root of B, if »> 3. The rest is obvious.
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APPENDIX D

We determine all irreducible representations p of ¢
whose index I, see (6. 2)] satisfies

I, <1, (D1)

We have already mentioned that there exists a formula'?
which gives /, in terms of the highest weight of p. Using
this formula as well as Weyl’s dimension formula it is
straightforward but somewhat cumbersome to determine
all irreducible representations p of g with [, <1,

Now the same problem has been solved in the mathe-
matical literature in quite another context'’ and our re-
sults agree with those of Ref. 17. The outcome is the
following: For any irreducible representation p of g the
index I, and the dimension dimp satisfy

[, <1 if and only if dimp <dim g,
l,>1 if and only if dimp >dimg,

I,=1 if and only if p is equivalent to the
adjoint representation of 9 .

Table III contains all nontrivial irreducible repre-
sentations p of § for which [, <1.
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The exceptional simple graded Lie algebras whose existence is suggested by the results of the preceding
paper are explicitly constructed. In this way the classification of all simple graded Lie algebras whose Lie

algebra is reductive is completed.

In this paper we construct the exceptional simple
graded Lie algebras whose existence is suggested by
the results of Sec. 4 of the preceding work.! These
algebras have been discovered by Freund and
Kaplansky?; their Lie algebras are s1(2)X sl(2) X s1(2),
s1(2) X G,, and s1(2)Xo(7). It turns out that the natural
framework to study the s1(2)X G, and s1(2)Xo(7) cases
are the algebras of the octonions, respectively the
Clifford algebras; some properties of these algebras
are presented for completeness. The reader who is not
interested in the “compact” mathematical language but
rather in possible physical applications can skip the en-
tire section and use the appendices where the exception-
al graded Lie algebras are given in a pedestrian way by
their commutation relations,

1.8 =sl(2) X sl{2) X sl(2)

To preserve the complete symmetry between the
three algebras sl(2) we modify our notation of Sec. 4,1
For notational convenience we consider the algebras
s1(2) as symplectic Lie algebras in vector spaces of
dimension two.

Choose for ¢=1,2,3 a two-dimensional vector space
u; and a nondegenerate skew-symmetric bilinear form
¥; onu ;. Let8,;=sp(y;)=sl(u;) be the symplectic Lie
algebra of all linear mappings ofu ; into itself which

leave ¥; invariant, We define
8 =8,Xg,Xg3, U=ZU;QuRugy, (1)

Then there exists a natural irreducible representation
of ¢ inu which will be taken as the adjoint representation
ofg inu.

Now we recall that any ¢ ;-invariant bilinear mapping
P;ruyXu; ~a;=sp(,) (2a)
has the form
PyUy, V) Wy =0, {0,(Vy, W) Uy = 8 ((W;, Up) Vi) (2b)

for all U;, V;, W, = u; and with some element 0; & K.
Hence the most general ¢ -invariant ansatz for the
product mapping u X uw - g is

U@ U,@ Uy, Vi® Vy® Vy)
=y (Uy, Vo) 93(Usy, V5) Py(Uy, Vy)
+ I3 (Uy, Vi) ¥3(Us, Vi) Po(Uy, V)
+ Py (Uy, Vi) 9p(Uy, V3) P3(Us, V3) (3)
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with U;, V;eu,, i=1,2,3. A priori the constants 0; ¢ K
may be chosen arbitrarily except that they must be non-
zero in order to ensure that (u,u)=4g¢, which is true

for any simple graded Lie algebra. Note that our pro-
duct mapping u X u = ¢ is automatically symmetric.

Using the identity
iUy, Vi) Wi+, (Vy, W) Uy + 9, (W, U V=0 (4)

for all U;, V;, W;cu; it is now easy to see that the
Jacobi identity for three odd elements [or equivalently
that Eq. (4.16) of Ref, 1] is fulfilled if and only if

0,+0,+03=0. (5)

Evidently the graded Lie algebra which we have obtained
is simple; let us call it I'(gy, 0y, 05).?

We know from (4.19) ! that the Killing form of
(0, 0,,0;) is identically zero. Hence there remains the
question whether there exists any nondegenerate even
invariant bilinear form ¢ on I'(0y, 0, 05).

If ¢ exists at all it is uniquely determined up to a
nonzero factor. Now the restriction of ¢ to n Xu must
be 8 -invariant. Hence it is nothing but a normalization
of ¢ if we demand that

3
qb(Ui@ U2® U3, V1® V2® V3): [—[1lpi(Ui’Vi) (6)

forall U, V;cu,, i=1,2,3.

On the other hand, we know that the three Lie alge-
bras 6; must be orthogonal with respect to ¢. There~
fore, the even bilinear form ¢ is fixed if we know the
restriction ¢; of ¢ to the Lie algebras §,;, i=1,2,3. It
is easy to see that ¢ is invariant if and only if we define

6= (1/80,) &, , (1)

where ¢,. is the Killing form of the Lie algebras ;.
8i

Using this result we can answer the question as to
which of the algebras I'(oy, 0y, 03) are isomorphic. In
fact, suppose we are given two triples (04, 0,, 03} and
(o1, 04, 04) of nonzero elements of K such that

0, + 0y +03==0{ + 0} + 03 =0. (8)

If there exists an isomorphism w of I'(gy, 0, 03) onto
I'(0f,04,04), then every nondegenerate even invariant
bilinear form ¢’ on I'(6{, 03, 0§) corresponds via w to a
nondegenerate even invariant bilinear form ¢ on
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T'(5,,0,,05). In view of (7} this implies that there exists
a nonzero number 7<¢ K and a permutation 7 of the set
{1, 2, 3} such that

oj=71°0,; i=1,2,3. (9}

Conversely, because of Lemma 3.1 1! it is evident
that the algebras I'(0,,0,,0;) and I'(0],0],0}) are
isomorphic if (9) is fulfilled.

2.3 =sl{2) X G,

Because of the well-known connection of G, and its
seven-dimensional fundamental representation with the
algebra O of octonions (over the field K) it is most ap-
propriate to construct our algebra in this language.
Let us, therefore, collect the properties of O which
are relevant for our purpose. ?* The algebra O of
octonions is an eight-dimensional algebra over K with
unit element e which has the following properties:

(a) O is not associative but only alternative, i.e.,
the associator

alx,y,2)=(xy)z - x(yz) (10)

is a skew-symmetric trilinear mapping of QX0 XxO
into O.

If x is any element of O we define the mapping L, (left
multiplication by x) and R, (right multiplication by x)
of O into itself by

L(y)=xy, RJ(y)=yx (11)

for all y= O. Then the alternativity of O has the im-
portant consequence that for all x, ye O the linear

mapping
D,,=[L,LJ)+|R,R]+[L,,R,] (12)

of O into itself is a derivation of the algebra O. [Recall
that a derivation of an algebra is a linear mapping D of
the algebra into itself which satisfies

D(uv) =D(u) v+ uD{v) (13)

for all elements u, v of the algebra. ] If D is any deriva-
tion of O then

[Dy Dx,y]:DD(x),y+Dx,D(y) (14)
for all x, y= O.

{(b) O is a Cayley algebra, i.e., there exists an in-
volution of O, denoted by x —x, such that

x+xc Ke, xxc Ke (15)

for all x= O. [Recall that an involution of an algebra
is a bijective linear mapping 7 of the algebra onto itself
which satisfies

) =u, T(ev)=7(v) T{U) (18)
for all elements u, v of the algebra, ]

It is customary to define a linear form 7 on O (the
trace) and a quadratic form N on O (the norm) by

x+x=T(x)e, xx=N(x)e (17)
for all x= O. Then
T(xy) = T(yx)=N(x +y) - N(x) ~ N(y) (18)

for all x,y< O and the bilinear form i on O defined by
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Ylx, y) = 3T (xy) (19)
for all x,y= O is symmetric and nondegenerate,

In the following we denote by Oy the subspace of
traceless octonions, i.e.,

0,={x= O|T(x) =0} (20)
If D is any derivation of O, then

YD), y) + ¥, D(3)) =0 (21)
and

D(0)C 0, alx,y,z)c 0 (22)

for all x,y,z< O.

(¢) The Lie algebra of all derivations of O is iso-~
morphic (and will be identified) with G,. It is then ob-
vious that the associator a is a G, invariant trilinear
mapping of OX0XO into O; furthermore, Eq. (14) im-
plies that (x, )~ D, , is a G,-invariant bilinear mapping
of 0XO0 into G, and Eq. (21) means that the bilinear
form gy on O is G,-invariant,

Finally we deduce from (22) that there is a natural
seven-dimensional representation of G, in O,; this rep-
resentation is (equivalent to) the fundamental repre-
sentation p(x;) of G,.

It is now easy to prove the existence of the simple
graded Lie algebra with ¢ =s1(2)X G,.

With the notation introduced in Sec. 4 ! we choose
u, =0y, ¥, =9 and identify p, with the natural represen-
tation of G, in O mentioned above.

According to the results of Sec. 4 ! all we have to do
is to look for a totally skew-symmetric G, invariant
trilinear mapping

~

P, : 0, X0, X0, ~ Oy, (23)
such that for all U, Ve O, the linear mapping ﬁz(U, V)
of O, into itself, defined by
ﬁZ(U) V) W:}s2(UJ V’ W)
+o{§(v, W U= (W, 0) v} (24)

for all We Q,, is induced by an element of Gy, i.e.,
by a derivation of O,

Now there is a natural candidate for }32, namely the
restriction of the associator a to O,x0,x0, [see (10)
and (22)]. In fact, up to a factor this is the only possi-
bility since the exterior product of three copies of
p(ry) decomposes according to

p(A AP AP =p(20) @ p(A) S p(0), (25)

i.e., it contains p(Ay) just once.

On the other hand, we are aware of the derivations
D, , in (12). It is not difficult to bring the definition (12)
to a form which is similar to (24) and in particular to
show that

Dy y(Z)=-a(U,V,2)- 4V, 2) U=~ (2, U) V}  (26)

for all U, Ve O, and all Z <= O. Hence our conditions are
fulfilled if we define
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pZ(UJ V; W) :%01 a(U~ Va VV)
for all U, V, We Q,.

(27)

The complete definition of the product mapping
¥ X u— 9 ig now contained in Eqgs. ( 4.5), (4.15),1 (24),
and (27). In particular we have
Py(U, V)=~ %‘HDU, v
for all U, Ve O,.2

(28)

Obviously the graded Lie algebra which emerges is
simple and we know from (4, 19) ! that its Killing form
is nondegenerate.

3.8 =sl(2) X o(7)

To begin with we recall that {(with the notation intro-
duced in Sec. 4 of Ref. 1) the representation p, of of7)
in u, is the eight-dimensional spin representation.
Hence it is appropriate to use Clifford algebra tech~
niques® in order to construct our graded Lie algebra.

We first collect some basic results on Clifford alge=
bras. Let @ be a nondegenerate quadratic form on an
m-dimensional vector space and let C(@) be its Clifford
algebra. We assume that m is even, m =2n. Then C(Q)
is isomorphic to the algebra L(¥F) of all linear mappings
of a 2"-dimensional vector space F into itself. In par-
ticular C(Q) is simple and all irreducible representa-
tions of C(Q) are equivalent to the representation in F,

It follows that there exist 2n elements I'; e L(F),
1 <j<2n, which generate the algebra L(F) and satisfy

LT+ T, =25, (29a)
if 1<j, k<2n. If we introduce the abbreviation
r2n+1 = inri cee r2m (Zgb)

then it is easy to see that Eq. (29a) remains valid for
1<j, k<s2n+1.

Suppose 1 <j, k<2r+1 and let E,, be the 2n+1)
X (2n+ 1) matrix whose elements are all equal to zero
with the exception of the element in the jth row and
the kth column, which is equal to one. Then the
matrices E;, - E,;, 1 sj<k<2n+1, form a basis of
o{2n+1) and it is easy to see that they obey the same
commutation relations as the elements %I‘jl"k, 1<j<k
<2n+1, of L(F). Hence we have a natural representa-
tion of 0o(2r+1) in F which maps E,, - E,; onto 3T',T,
if 1sj,k<2n+1, j#k. This is the (irreducible) spin
representation of o(2n + 1),

It is easy to derive rules for the traces of products
of the I'; which are similar to those valid for the usual
Dirac matrices. For later reference we note that

Tr(I,I,T,T,)=~2"5,5,, (30)
fl<j<k<2n+landlsp<gs2n+l.

Let us come back to Egs. (29a). These relations are
equally satisfied if we replace the elements I';c L(F)
by (- 1)"'T';e L(F*), 1<j<2n, Hence we have a repre-
sentation of C(Q) in F* which (according to our previous
remarks) must be equivalent to the representation in F.
This means that there exists a nondegenerate bilinear
form ¥ on F such that
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YT HU), V)= (= 1)"p(U, T (V) (31)

for 1 <j<2n and all U, Ve F. (Of course # is nothing
but a basis-independent version of the charge conjuga-
tion matrix.) It is easy to check that this equation re~
mains valid for j=2xn+1 and that

WL, T(U), V) + (U, T, T,(V)) =0

if1<j, k<2n+1, j#k, and U, Ve F. Equation (32)
means that ¢ is invariant under o(2n + 1). One can
prove that ¥ is symmetric if » is congruent to -1 or 0
mod 4 and that ¥ is skew-symmetric if n is congruent
to 1 or 2 mod 4.

(32)

For the construction of our graded Lie algebra we
are interested in the case n=3; then dim¥F =8 and ¢
is symmetric. Using the notation of Sec. 4 of Ref., 1,
we chooseu,=F, ¥, =9 and identify p, with the spin
representation which has been defined above,

Next we apply Eq. (3.28) ! to obtain the correct
ansatz for P,. Recall that the trace form associated
with the spin representation is a nondegenerate in-
variant bilinear form on o(7). Hence we define in
agreement with (3.28) ! a bilinear mapping

B, : FXF —py(o(7))
by
§Te(P,(U, V)T, T,) = (T, T,(U), V) (33Db)

if1<j<ks<Tand U, Ve F, with some element 7¢ K.
In view of (30) this implies

Byu, m)=-7 T 90,00, NT,T,

(33a)

(34)

forall U, Ve F.

The graded Lie algebra in question will exist if and
only if we can find a nonzero element 7< K such that
Eq. (4.16) 1 is fulfilied.

We have solved this problem by making a Fierz
transformation of (4.16) ! and by taking advantage of
symmetry properties like (31) and (32)., Without going
into the details (it is not necessary to use a particular
representation for the I';) we state that (4.16) ! is ful-

filled if (and only if) we choose
T:%Ui. (35)

The complete definition of the product mapping
u X u— gis now contained in Eqs. (4.5), (4.15),* (34),
and (35). In particular we have

Py(U, V) =30, ]Zg WU, T; TV (E;, - Ey;) (36)

for all U, Ve F=u,,

Evidently the graded Lie algebra which emerges is
simple and we know from (4.19) ! that its Killing form
is nondegenerate,

Appendix A: 8 =sH{2) X sl{2}) X sl{2)

Even generators:

QF; 1<j<3, 1<ms<3 (A1)

Odd generators:
Vem; @B, ¥=x1 (A2)
Scheunert, Nahm, and Rittenberg 1642



We use the summation convention [except of course
for the upper index of @ which enumerates the three
algebras s1(2)].

Commutation relations:

[QF, Q) =10me;m QT (a3)
(@}, Vam | =274 Vasy,
(@5 Vam] =27 hs Vagr, (A4)
[Q?’ Vo Br] = %Trj'r Vasr s
{Vasrs Vot = 01C 55 Cop(CT9) 400 Q]

+0,C 400 Cop(CT) g

+03C 40 Cog(CT),pe Q3. (A5)

Here 77, 1<j<3, are the Pauli matrices and

C:i72:<_01 (1)) (A6)

is the corresponding charge conjugation matrix,
Furthermore, 04, 0,, 03 are arbitrary nonzero numbers
which satisfy

0, + 0, +0,=0, (A7)

Appendix B: g =sl(2) X G,

In order to derive concise expressions for the com-
mutation relations of the graded Lie algebra in question
we shall first give a description of the Lie algebra G,
and of its fundamental seven-dimensional representation
which might be also useful in other situations.

To begin with, letey,...,e; be a basis of O; which is
orthonormal with respect to ¥. Then the multiplication
in O is given by

ee;=—0;;e+Ej e, (B1)

where £ is a totally skew-symmetric G,-invariant
tensor [see (25)]. Here and in the following, all indices
run from 1 to 7; furthermore, we use the summation
convention,

For the “usual” basis of O, (which will be chosen in
the following) the components of £ are determined by
the following prescription: If (i, j, k) is one of the triples

(1?2?3), (174’ 5)) (1’7’ 6)?

(2,4,6), (2,5,7), (3,4,7), (B2)

(3? 67 5),
then £;;,=1. If there is no permutation of {1,...,7}
which transforms (¢, j, k) into one of the triples (B2),
then &;;,=0.
Next we define a G,-invariant tensor n of rank four by
ale;, e;, e,) =21 jp, 0, (B3)

It turns out that 5 is totally skew-symmetric. Of
course it is possible to express 7 in terms of £; in fact
one can prove that

Eiirbpar= 0ip0jq = 014055 +Mijpq (B4)
Using this result it is easy to see that n;,, =1 if
(¢,4,p,q) is one of the quadruples
(1,2,4,7), (1,2,6,5), (1,3,6,4), (1,3,7,5),
(2,3,4,5), (2,3,7,6), (4,5,7,6), (B5)
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and that 7;,,, =0 if there is no permutation of {1, cees 7}
which transforms (i, j, p, ¢) into one of the quadruples
(B5).

Finally we introduce the abbreviation

Dij :Dei'ej' (B6)
Note that
Dy;=-Dy. (B7)

Of course the D;; form a set of generators of the vector
space G,. But even the D;; with {<j (for example) are
not linearly independent. In fact, since G, has dimen-
sion 14 there must exist seven independent linear rela-
tions among the D;;, i <j.

Now one can prove that in any alternative algebra

D,y 2+ Dypt D,y =0 (B8)

Xy, &

for all elements x,y, z of the algebra. This equation
implies

gierrk—i_gjkrDri+£kirDrj:0’ (Bg)
or equivalently
EipDy;=0 (B10)

which is also obvious from general representation
theory reasons. These seven equations may be de-
scribed as follows: Choose any index k, 1 <k <7, Then
there exist just three different pairs of indices (p,p’),
(g,9"), (r,#') such that

Epprr = Eaqn = Erpn=1. (B11)
With these indices we have
D,,. +D,. +D,.=0. (B12)
D,,., Dy, and D, span a Cartan subalgebra of G,.
From (26) we obtain the explicit formula
Dyjle,) = (48, 05 — 48,8, - 2n;55,) €,
=(60;56;, = 65,855 — 2£; 485 ) €45 (B13)

which may be regarded as the definition of the seven-
dimensional fundamental representation of G,.

Applying the second of these equations as well as (B9)
we derive from (14) the following commutation relations
for the D;;:

[Diy, Dyy) =65, D;, - 65,,D;, + 65,0,

Je
- 661'qu9 - ZgijkEPQerr‘

We would like to remark that it is a bit cumbersome to
derive (B14) directly from (B13).

(B14)

Using these results, a complete description of the
graded Lie algebra in question reads as follows:

Even generators:

Qs 1sjs3,

B15)
Fo; 1<p,q <7, (
where
F, ==F,,
B16)
Epor Fpe =0; (
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Odd generators:

Vap; =21, 1sp<T; (B17)
Commutation relations:
(@), Qul =€ Q1
[F,, F,s]=38,,F - 38,F, +30,F,,
=384 For= £ pqud rsu uns (B18)
[Q;, F, ]=0,
(9, Vapl = 3710 Ve,
(Foo Varl =28, Vo = 28, Vo = Thpars Vass (B19)
{Vaps Vb =200, (CT7), 4Q; = (0/2) C 4 Fp,. (B20)
Once again 7/ are the Pauli matrices and C =472,
The G,-invariant tensors ¢ and n have been defined
above. Finally ¢ is an arbitrary nonzero constant.
Appendix C: g =sl{2) X 0(7)
Even generators:
Ry 1sj<3,
Qpe; 1=p,q<T, (c1)
where
Gpo=— Ggp; (c2)

Odd generators:
Veu; @=21, 1<u <8; (C3)

Commutation relations:

[Qj; Qk]:iejlel)
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[Gpa’ Grs] == GPqus + 6qups - 5qstr + 5pqur> (C4)
[Qj’ qu] =0,

[Qj> Vau] :% T&”a Va’u,
[Gpw Vau]:%(rprq)u'u Vau'v p#q, (CS)

{Vau, Vo, } =20C, (CT9),5Q; + (0/3)C o f(CT,T,), ,Gpe.

(C8)
Here again 77 are the Pauli matrices and C =72,
TheT',, 1< p <7, are a family of eightXeight
matrices which satisfy
I, +T,,=25,. (cn)

C is the corresponding charge conjugation matrix with
t¢=C, ‘r,l=-Cr,. (C8)

Finally ¢ is an arbitrary nonzero constant. For a con-
venient choice of the I', and C matrices see Ref. 6.
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Soluble classical spin model with competing interactions*
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The partition function and spin pair correlation functions have been calculated exactly for a classical linear
chain model with alternate next-nearest-neighbor (nnn) interactions, in which the interaction energies

between pairs of nearest (nn) and next-nearest (nnn) neighbor spins are arbitrary functions of the angles
between the relevant spins. Of special interest is the cosine interaction model described by the Hamiltonian

H = —Z | [Ji(costy_ 12 +c088y;0,, 1)+ J2c0863;_ 1 2:41]-

When the nnn interaction is antiferromagnetic (J, < 0) it competes with the nn interaction J, and there can
be disorder point(s) at which nnn correlations change from monotonic to oscillatory. The ground state is
ferromagnetic when the interaction ratio r=J/J| > —1/2=r_, but is disordered for more negative
values. The disorder point locus has been determined. It terminates at zero temperature at r, = —1/2'%, at
which point the ground state energy is a maximum. The result that r, differs from 7, is thought to be
peculiar to one-dimensional models. Over a limited range of values of r there can be two disorder points.
The low temperature asymptotic behavior of the partition and correlation functions is analyzed in detail.
Also a novel summation formula for spherical Bessel functions is obtained.

1. INTRODUCTION

In this paper we calculate the partition and spin cor-
relation functions for a classical linear chain model
with alternate next-nearest-neighbor (nnn) interactions,
in which the interaction energies between pairs of
nearest (nn) and next-nearest (nnn) neighbor spins are
arbitrary functions of the angles between the relevant
spins. We shall be especially concerned with the case
when the interactions are simple cosine interactions
described by the Hamiltonian

N
H=- :/—_2 {58241+ Sai + 84 + Soguy) +SSaig - Spiug}

N
== 21 {J1(c086y;.1,5; + cOSBy;, 5501) +J5 COSOy; 1 501}
i=

(1.1)

The inner product between spin variables S;-8;, which
would appear in the quantum mechanical Heisenberg
model, has been replaced by the corresponding classi-
cal cosine interaction. The model is of interest when
the nnn interaction J, is antiferromagnetic (/5 <0) and
competes with the nn interaction J;. We take J;, >0
throughout, without loss of generality,

The present soluble model is simpler than the gen-
eral quantum mechanical Heisenberg model, with both
first and second nearest neighbor interactions, in two
important respects. First, as in any classical model,
noncommuting finite-dimensional matrix (spin) opera-
tors have been replaced by continuous commuting angle
(spin) variables, and traces over products of matrices
have been replaced by multiple integrations, over the
unit sphere in the present case. Second, only allernate
next-nearest-neighbor interactions have been retained,
so the model consists of a chain of triangles, as illu-
strated in Fig. 1. Consequently, the partition and
correlation functions factorize into terms related to
individual triangles.

Study of this model is motivated by a paper by
Thorpe and Blume! in which they solve exactly a classi-
cal model containing biquadratic interactions® which
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exhibits a “quadrupolar” disorder point. This model
has features which distinguish it qualitatively from the
analogous Ising models on linear chains containing nnn
interactions. ® In particular, over a limited range of
interaction ratios » =J,/J; there are two disorder
points, and the disorder point locus terminates at zero
temperature at a value of the interaction ratio », which
differs from the value 7, associated with the breakdown
of the ferromagnetic ground state. For values of 7 less
than 7, there is a disordered ground state, with a
characteristic angle between adjacent spins.

The cosine interaction model described by (1. 1),
which is the subject of this paper, is similar to the
Thorpe—Blume model as regards the shape of the
disorder point locus and the appearance of distinct val-
ues of 7, and 7,. However, the ground state energy per
lattice site £ has a maximum as a function of # which
also occurs at 7p. Moreover, the functional dependence
of E on 7 is quite different from both the Thorpe—
Blume model, for which £ is a monotonic function of 7,
and from the Ising models, for which 7, =7, and the
graph of E versus 7 consists of two intersecting straight
lines., These matters are discussed in Secs. 10 and 11
of this paper, which contain the results of most physi-
cal interest, and can be read independently of the re-
mainder of the paper.

The partition and correlation functions of the classical
linear chain and of the decorated classical linear chain
with alternate nnn interactions are calculated in Secs.
2—4 and Appendix A, for a general classical interaction
Hamiltonian. The special form of the cosine interaction
in (1.1) enables us to obtain compact expressions for
the partition function and nnn correlation functions in
terms of the first two eigenvalues Ay and Ay, of the
transfer operator or “matrix.” Various methods for
analyzing the integral expressions for these eigenval-
ues are employed successively in: Sec, 6, series ex-
pansions; Sec. 7, integration by parts; Sec, 8,
Laplace’s method; and Sec. 9, representation by special
functions. We shall be especially interested in the
mathematical techniques required for the extraction of
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low temperature properties, A by-product of our in-
vestigation is a novel summation formula for spherical
Bessel functions, obtained in Appendix D.

2. PARTITION AND CORRELATION FUNCTIONS

In this section we review the divec! calculation of the
partition function and generalized spin correlation func-
tions for a one-dimensional assembly of classical
spins. ‘% We shall treat the ring and chain in turn as a
cluster of N spins. Label the spins i=1,2,...,N, and
suppose there is an interaction Hamiltonian H, ;. be-
tween adjacent spins 7 and ({ + 1) which depends only on
the angle 6; ;.4 between them. Then the partition func-
tion for a ¥ing in which the Nth spin is linked to the
first spin is:

o). [
2.1

where d; =siné; d6; d¢,; denotes the element of solid
angle ;= (9;,¢,), 6; and ¢; being polar and azimuthal
angles determining the orientation of the ith spin re-
ferred to arbitrary but fixed axes, and the integration
for each i is over the surface of a unit sphere. Here
B=1/kpT. This partition function may be evaluated in
terms of quantities A, #=0,1,...,%, defined via the
expansion of the Boltzmann factor in a series of
Legendre polynomials, and thence, by use of the addi-
tion theorem, in terms of (normalized) spherical
harmonics, as follows:

ay - - - dQx

(47)1‘( exp(-— BH12) .t

exp(- BHyy) (ring)

exp(— BHy) = f} (@n + 1P, (cosby,) (2. 2a)
=4n Z)o » An Yo () T (Q5). (2.20)

We have written down the expansion for the bond be-
tween spins 1 and 2, but we shall suppose, for economy,
that the interaction Hamiltonian has the same form for
all pairs of neighboring spins. The extension of our re-
sults to the case of arbitrary interactions between dif-
ferent pairs of spins is straightforward. The coeffi-
cients A, are given explicitly by

A= J.]! dx exp(= BHyp) P, (x), (2.3)

where x =cosbyy, and the orthogonality of the Legendre
polynomials over the interval (- 1,1) has been used,

On substituting expansions of the form (2. 2b) into each
factor in the integrand of the partition function, and
employing the orthogonality of the spherical harmonics,
we obtain the desired expression for z\:

Zj(vr):-‘i“‘i Zn.ll Z; Ay

n‘ =0 nN=0 ml""l m p==n )

coan ) A [ a9y

njml(nl)ynjmi () - - YnNmN(QN)YnNmN (@)

E Z ceen, D ver d

1 '11v=0 n1 Ny nyng "N'l1

n
x Zs RS
12704 m}v""N m1m2 mymy

= i Ay Z 1= :é) (2n+1)A) (ring),

n=( meaaen

(2. 4)

1646 J. Math. Phys., Vol, 17, No. 9, September 1976

For asymptotically large N, the partition function is
determined by Xy, the largest coefficient, as may easily
be seen from (2. 3) using the fact that Py=1, and all
other Legendre polynomials are less than unity in
magnitude in the interval (- 1,1). Similarly, one may
obfain the partition function for a chain. On setting

Hyy =0, so that there is one less interaction to expand,
one observes that only Y(2;) and Y (S2,) contribute to
the integrals over £, and Ry, and so the sums collapse
to a single term n =1 =0, and

Z$ =»1, (chain). 2.5)

Since we shall only be interested in the limit of asymp-
totically large N, we shall write down formulas as if
for a ring, on the understanding that vanishingly small
terms will be omitted in subsequent calculation,

A generalized pair correlation function between
classical spins 7 and ({ + %) may be defined in terms ot
the mean values of P,(cos¥; ;,,):

- Ay

(Pn) = / / (“;1 (am¥

xexp(~ BHyy) - BH yq).

When n=1, we retrieve the usual pair correlation func-
tion (cos()i,i+,>. To evaluate the generalized correla-
tion, expand each factor in the integrand using (2. 2b),
and set

Pn (COS 911, i+r)

exp(- (2. 6)

m(Qhr)y (2- 7)

4r .

P (cosb;,;,,) = (2 +1>m>;:n Y ()Y
in which the complex conjugate is placed on the first
member of the addition formula, Then retaining only
asymptot1cally important terms, we have, setting
Yoo = (4m)7!/

(Py(cosb;, i+r)>
_ Z (?&n' _~_4_7_T¢_ / d§; ¥
0 m'==r?\ g m?fn 2n+1 (471’)1 E

(Qé «*r) Y;"m' (Qi+r)

-z B0

The result (2. 8) for the generalized correlation func-
tion is exact for a chain with free ends, and is asymp-
totically correct for a ring as N—<, This may easily
be seen by coustructing the general expression for the
correlation on a ring, and setting Hy, =0 to obtain a
chain, as we did previously in deducing the partition
function for the chain from that for the ring, between
Egs. (2.4) and (2.5). The derivation of an exact formula
for the correlation function of a finite ring is more in-
volved, and is not considered here.

:m (Ql) Yn‘m'(Q‘i)

5rm’t‘)mm

(2. 8)

The first two correlation functions with n=1 and 2 for
dipolar and quadrupolar order were used by Thorpe
and Blume. ! However, our resuilt is actually a special
case (v=23) of the general result for v-dimensional
classical spins obtained by Liu and Joseph (v is the
spin-space dimensionality). 7*?

The coefficients 2, are in fact just the eigenvalues of
the integral equation
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FIG. 1. The linear chain with
J J nearest-neighbour interac-
-- 33353, - tions Jy and alternate next-

nearest neighbour interactions
JZ-

d .
)\nd)n(gl):'/.4_57-:2 exp(— FiHiZ)Z/)n(Q'?.)’ (2- 9)
whose eigenfunctions are the spherical harmonics
Y,..(R). As is well known, the partition function for a
ring of spins can be written in terms of these eigen-
values, ® as in (2. 4) above.

3. PARTITION FUNCTION OF DECORATED CHAIN

The decorated chain is illustrated in Fig. 1. Odd
nmumbered spins interact via a Hamiltonian Hy;_y, 9.,
whereas even numbered spins are linked with neighbor-
ing odd (numbered) spins via Hamiltonians Hy;_; 9; and
Hy 94,4 We actually have a one-dimensional assembly
of spins linked by nearest-neighbor (nn) interactions
plus alternate next-nearest-neighbor (nnn) interactions
between odd spins. The even spins can be treated as a
decoration. That is, we can integrate all the even spin
variables and reduce the problem to that of a linear
chain with an effective pair interaction Hamiltonian
H$i%, »:.4 between odd spins. (This is equivalent to
integrating out vertices of degree 2, following Joyce’s
method®). The integral in the partition function involv-
ing the 2ith spin can be developed by expansions of the
form (2. 2). Set

exp(- BHy;.q,94411) = 20 (27 + 1)1 P,(cosby;.1, 2441),
n=|

(3.1a)

w©

exp(= BHyy,zi) = 20 (20 + 1), Po(C080y;,5101), (3. 1D)

(691, Boy):

etc., and perform the integration over £,;=
f A%,
—= exp|-

_f‘m?‘(:;)if) ‘L“

n=0 n'=Q = mz=en'

B(Hyi.q,2: + Hyj,0401)]

n'

XY (s )Y o ()Y e (20, ) Y (82944

nm(QZi-I)Y:{m(QZi+1)

= nZO (2n+1)u3.Pn(cosezi_1'2M)_ (3.2)

Thus once the decoration is integrated out, the effective
Hamiltonian will involve only the angle between the
spins 2¢— 1 and 27 +1:

exp(— BHSIL, 5141)
(3.3)

= exp(— BHy;_1,2141) ?0 (21 + 1) P, (co80;_1, 2i41),

with corresponding eigenvalues as in (2. 3):
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Ao=13 [ ;1 dx exp(= BHy;.y,2500) P (0) 2 (20" + 1)1iePrlr)

=3 fg ;f, @n' +1)@n" + APl (3. 4a)
n’= 20
x j_” dx P, (x )P () P,r(x)
=% f) Z)(Zn +1)@n" + 1)\ P pldm,n', n"), (3. 4b)

where J(n,n’,n") denotes the final integral over a
product of three Legendre polynomials, In order for
expressions like (3. 2), (3.3), (3.4) to be useful, one
needs to perform the indicated summations, if possible,
in closed form. We note in passing that if we define
expansion coefficients v,, by

exp (= BHy; 1, 9441) Pr(x) :?o @n' + 1) Pplx), (3.5)
and substitute in (3.4a), then the eigenvalues A, can be

expressed as a single sum:
w

Ma= 20 (204 1)V (3.6)
=0

For any selected value of #, one may perform the
integration required to evaluate J(r,n’,n") in (3. 4b) and
express ), as a single sum. For example,

N=2 @nt NP0, (3.7a)
n=
A =20 phle + DA + Y] (3.7b)

(3.7a) can of course also be derived directly from (3. 6).

4. PAIR CORRELATION FUNCTIONS OF DECORATED
CHAIN

The pair correlation function between spins ¢ and
(i +7) is defined as the mean value of cosé, ,., as in
(2. 6) with =1, and with the Hamiltonian for the
decorated chain in the Boltzmann factors. There are
three types of correlation to consider, depending on
whether the spins involved are linked by nnn bonds
(0odd numbered spins) or are decorating spins (even).
That is, we have odd—odd, even—odd, and even—even
spin correlations,

The odd—odd case is simplest, since intervening
decorating spins may be integrated out and an effective
Hamiltonian introduced, as in (3.2). The desired cor-
relation then reduces directly to the calculation of ),
and A, with the effective Hamiltonian, as in (3.7). By
analogy with (2. 8), setting =1, we have

(€080, 954r) = N/ Ng)F, 7 =2R. 4. 1)

The calculation of the pair correlations involving
decorating (even) spins is more involved. We may
either appeal to a powerful theorem of Joyce [Eq. (5.12)
of Ref. 6] or proceed directly following Thorpe and
Blume [Eqs. (9) and (10) of Ref, 1]. A detailed deriva-
tion is given in Appendix A, where it is shown that for
even—odd spins

€086y, 950
(0)

(= Mo _
_(%1) {2 " un[(n+1)um+nun-1]}, r=2k+1,
0 n=0

(4. 2)
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and for even—even spins

<00592i,2m>
gV ;’i Ao
7<%>{ﬁ)M
(4. 3)

The structure of these expressions for pair correlation
functions is analogous to the corresponding results for
an Ising chain with alternate next-nearest neighbor
interactions. ® One may readily check that the formulas
of the last two sections (3 and 4) reduce correctly in
special cases when either the nn or the nnn interactions
are absent.

2
ol 02+ Dty + »'zun-d} , rT=2k+2.

5. COSINE INTERACTION MODELS

Now we adopt specific forms for the interaction be-
tween adjacent spins. For decorating spins set

Hyyppn == J1 €080y 550 and K=pJy=J,/kpT (5.1)

Then the expansion of the Boltzmann factor becomes
= E (@n +1)i ,(K)P,(cosb),

n:

exp(= BHy,z5.) = exp(K cos®)

=3

(5.2)

where i,(K) is a spherical Bessel function of pure
imaginary argument (Appendix B). Thus we may identi-
fy the coefficients in the expansion (3. 1b) as

o+
pa=3
We are now in a position to perform the sum needed for
the construction of the effective interaction in (3. 3).
Making a slight generalization to allow for different
interactions between a decorating spin and its left- and

right-hand neighbors, the required sum is, with x
=cosb,

dx exp(Kx)P,(x) =1,(K). (5. 3)

5 (@4 1)1 (K (K7) P, ) = SRR (5. 4)

n=0 R(x)
where

R(x) = (K* + K™ + 2KK'x)1/2, (5. 5)
The eigenvalues are given by the integral formula
(3. 4a):

+
1 sinhR{x
Ap= —2_ ] dax eXP( )3}121 1,21+1) (X)( ) Pn(’\')- (5 6)

-1
In the further special case when the nnn interaction is
also a cosine interaction, with

Hy; g, 2001 == I €08y 4,050 and L =pJy=Jp/ksT,
(5.7)
the integral for the eigenvalues becomes
+1
R
xn:% f dx ex (Lx)ﬂmz ©) p (xy. (5. 8)
-1 R(x}

Then the expansion coefficients /\;D’ in (3.1a) are also

spherical Bessel functions,
}\:10)—1:"(11)’ (5' 9)

and the expansions (3.7) for the eigenvalues A, and
become
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A= §<2n+1) (B )in(K"Yin(L), (5.10)
A= ZJO @+ 1) ()i (B[ + 1)i oy (L) + iy (L)) (5. 112)
Zj, (@1 + 1)i (K)i (K" )it (L), (5. 11b)

n:

=

Of course (5. 8) is a more useful “closed form” for the
sums in these equations. It is interesting to note the
symmetry in X, between K, K’, and L. In (5.11a) the
square bracket contains Bessel functions which com-
bine to give the derivative i/ (L) so that

ANy
oL’

A= (5.12)
a result which is obvious from (5. 8), and is actually a
special case of a general derivative relation obtained by
Joyce [Eq. (5.12) of Ref. 6]. One observes in Egs.
(3.7, (4.2), and (4. 3) that the square bracket factors
contain just those combinations of eigenvalues which in
the cosine interaction models reduce to Bessel function
derivatives as discussed above. From now on we shall
further restrict our analysis to the case when K’ and K
are equal, so that in Eq. (5. 8) for ), we have
R(x)=K[2(1 +x)]*/% (5.13)
Also for cosine interaction models, the extra curly-
bracket factors { } appearing in the even—odd and
even—even spin correlation functions in (4. 2) and (4. 3)
can be obtained by differentiation of ;. Noting (5. 3),

(5.9), (5.10) and (5.11), we have
{;} )\(0)“ [(”—+ I)Hnﬂ +}1}J.,,_1] }
ag A
St @i 1) (LY (K ) — ant L 2R (5.14)
0 prar n n n 0 2 aK ’ .

from which it is clear that the extra {}factors are
positive and do not affect the signs of the correlations.

6. SERIES EXPANSIONS

The series expansions for Ay and Ay are useful at high
temperatures, and in certain asymptotic limits also at
low temperatures.

At high temperatures, A, and A; may be expanded in
powers of K and L by use of the power series representa-
tion of Bessel functions. For A; we have, to leading
order,

~4L + LK+ (6.1)
from which we note that when L is negative (J, <0,
antiferromagnetic), A is negative at sufficiently high
temperatures. Now it is 2, that determines the nature
of the pair correlation decay (Sec. 4). In particular

nnn pair correlations are seen to be oscillatory at high
temperatures, and we can estimate the disorder point
locus by finding the temperature at which A; vanishes.

The estimate is valid when kgT > J;> |J,{, From (6.1),
1 _ ksl
2 kB 4 .2
K, J; 3J," 6.2)
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FIG. 2. Graph of the ground

state energy per lattice site

E/J; versus interaction ratio
r=Jy/J;. The ferromagnetic

phase terminates at » = — 4,

and the maximum is at ¥p

=- 142,

At low temperatures in the asymptotic limit |J, |
> kpT>J,, we may use the asymptotic form of the
Bessel function,

, _exp|L] n(n+) 1, L>0,
W)~ 3L <1' 2101 )X{(-)", L <0,
(6. 3)

The leading terms in 2y and X; may be extracted from
the series

1, L>0

-z <2n+1)i,,<lL|)[z'n(K)F><{(_)n, I <o,

_exp(IL]) s s i1 L>0
+ K ’
_exp(ILD) (sinh2K)/2K, L>0
T 21l 1, L <,
For ferromagnetic nnn interactions, L > 0, the low
temperature form
~exp(L + 2K)/8KL (6. 5)

actually agrees with the exact result we shall obtain
later, and gives the ground state energy per site
correctly (Fig. 2):

-y + 2y). (6. 6)

For antiferromagnetic nnn interactions, L <0, the

low temperature form is not adequate to give the ground
state. Even with the next correction term in powers

of J3/J, or K*/L, so

Ao~ _PLI_L_I_§(2 +1)[ (K)]z{l_n(itl_)-;....}

2|1L| 21L |
x(-)', L<0 (6.7)
_exp(IL]) K
=iz Mty tooge

we still do not get the correct result, This is because
we are (invalidly) trying to interchange limiting process-
es. As far as it goes, (6.7) is in agreement with the

full expansion, which is obtained in the next section,

7. ANALYSIS OF INTEGRAL: INTEGRATION BY
PARTS

In an attempt to investigate further the asymptotic
case |Jy| > kgT > J; when J, <0 we commence by taking
the integral for 2, and integrate successively by parts.
This process generates two infinite series, coming
from the upper and lower limits of integration, one of
which is summable directly in terms of a confluent
hypergeometric function, and contains the expansion
(6. 7) of the previous section. The integral for A, is,
from (5. 8) and (5. 13),

1 "
=7 f dx exp(Lx)
-1

1649

sinh{&[2(1 +x)]1/?}
TK[2(1 +x)]1 7%}

(7.1)
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We observe that the second factor in the integrand can
be expressed in terms of a Bessel function

iy(z) = (sinhe)/z. (7.2)
Then with the abbreviation

y=[2(1 +x)]V%, so that y'=1/y, (7.3)
the integral becomes

A= %f_II dx exp(Lx)iy(Ky) (7.4)

We now integrate by parts successively using the gen-
eral identity
Net

[P axfe=2 D) 2+ () [ an ) 0'g),

(7.5)

where D=d/dx and I denotes indefinite integration.
We identify

f=exp(Lx) and g=1,(Kv), (7.6)
so (Appendix B)
I"f=exp(Lx)/L™ and D"g=K™i (Ky)/Ey)". (1.7)

One may easily check that the remaining integral in

(7. 5) tends to zero as N — « [by placing a uniform bound
on the integrand in the interval (- 1,1), and using the
large N behavior of the Bessel function]. Then, extend-
ing the series to infinity, we get

Ll 2n
S s { Ly 2,

=0 L)M aep O7

L—i—lz(zf{f){,,} (7. 8a)

E-L

() oo
T (-2L) mo 1.-3-5--+(2n+1) " (-2L)

K n.
X Z__}) (E) i,(2K)

~ (1% -ZIL{2> - a5 B (5ar) e

Ms

(7. 8b)

(7. 8¢c)
_ exp(-L-K/2L) f, ; K et
=7 2D M(2 2 2L> C2L)
><7‘( ) i (2K), (7. 8d)

where M(a, b;z) is a confluent hypergeometric function
(Appendix C), and we have used Kummer’s transforma-
tion on the final line, The first series in (7. 8b) is an
expansion in powers of (K%/L), and is in agreement with
(6.'7) up to two terms, It is the first term in (7, 8) which
is asymptotically important when J, is negative and

|Jy | >R pT>J;. The representations of A, in (7. 8) are
exact, and will be of further interest in Sec. 9. We note
here that the asymptotic behavior is described correctly
by the first term when J, <~ 3J;, but that the second
term also contributes to the low temperature properties
when T — 0 with J; and J, fixed, and J,> — #J;. How-
ever, in the above asymptotic limitswe can use the
asymptotic form of the hypergeometric function, and
write

exp(~ L) exp(- K*/2L)
K(- 2L717)Tﬁ2 ’

X~ (7.9)
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a result which is confirmed in Sec, 8, and is shown to
hold rigorously when L <- 3K in Sec. 9.

8. ANALYSIS OF INTEGRAL: LAPLACE'S METHOD

The low temperature behavior of X, and \; can be
extracted from the integrals by application of Laplace’s
and related methods. !® After making the variable change

x=2u-1 8.1)

the integral for x, becomes

1
A= e—xﬂgﬁ fu dw exp(2Lw?) sinh2Kw P, (2u? - 1),

(8.2)

When L >0, but X is fixed, the leading asymptotic
term in x4, can be extracted by inspection of the behavior
of the integrand at the upper limit, Using Laplace’s
method, * we have
e’  sinh2K

"3 9K (8.3)

Ag

in agreement with the corresponding expression in (6. 4).

At low temperatures when K and |L| are large, the
dominant contribution to the integral for X\, comes from
the neighborhood of the point where the factor

exp(2Lw?) sinh2Kw = exp[ gw)], say, (8.4)
is greatest. Explicitly we have

glw)=2Lw?* +1log sinh2Kw, (8.5a)

g'(w)=4Lw + 2K coth2Kw, (8. 5h)

g”w)=4L - 4K*(csch2Kw)?. (8. 5¢)

While Jy > - 3J;, or L> - 3K, the maximum value of
gw) occurs at the upper limit of integration where
g'(1)> 0. Then, following Laplace’s method, ¥ we have

i
n= Z2ED [ el glp et - 1) (@ 60)
0
. exp(=L) exp[g(1)]
K g'(1) Ball) .69
.. eXp(L) sinh2K (8. 6¢)

OK(K+2L) ’

where in the last line we have inserted the low tempera-~
ture form of g’(1). This confirms our earlier results
and shows explicitly the breakdown at K =~ 2L, The
ground state energy is given correctly as in (6.6), and
as T —0, the specific heat per site approaches the
(physically unacceptable) value % 5.

When J, is negative and sufficiently strong so that
Jy <—%J; <0, or L <~ 3K, then g(w) has a maximum
within the range of integration at w =w,, say, deter-
mined by the vanishing of g’(w) in (8, 5b). Following
Laplace’s method, we now have

A~ SREL) ex A(“’ U p(oud-1), (8.72)
with

A== 35" (we)/ 7. (8. 7b)
As T—0,
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wy ——K/2L =—J/2J,=cosb, say, (8. 8a)

and
A~ (=2L/m'%,

and dw,/dB — 0 exponentially fast, from (8. 5b). On
substituting these low temperature forms in (8. 7a) we
find the low temperature form of A;:

_ exp(— L) exp(~ K%/2L)
0 2K (- 2L/m)i/2

(8. 8b)

8.9

Now, employing the usual thermodynamic recipes, one
finds that the energy per site is (Fig. 2)

E = 3Jy +wid, + sd log(K A)/dB (8.10a)
~ 5(J,+ 2/2T;) as T—0, (8. 10b)

and the specific heat per site is
C—2%kg, as T—0. (8.11)

One of the most interesting results is that for the
pair correlation function between nun spins (4. 1), which
at T=0 with » =2k is

1 gy > = 1J
— R __ ’ 2 291,
<00592i,2i+r> - (>\1/A0) _‘{ (COS26)k, JZ < - %le (8- 12)
with 6 defined as in (8, 8a). There is a ferromagnetic
ground state when J, > — 3J,, and a disordered ground
state when J, <~ %J1° The change over occurs at the
critical interaction ratio

v =Jdy/d =~ . (8.13)

In this latter phase, the pair correlation decays ex-
ponentially, but changes over from monotonic to oscil-
latory at 8=7/4, where the interaction ratio is

ro=Jy/dy==1/VE, (8.14)

at which value the disorder point locus meets the zero
temperature axis, The shape of this locus near 7T=0
can be extracted from A; when an extra higher order
factor is included in (8. 7a). It may be shown (Sec. 9)
that X, is given by (8. 9) up to terms which vanish ex-
ponentially fast, Hence we can extract A; by differentia~
tion of ), as in (5.12) and gain the required correction
factor:

_an_ exp(-L)exp(-k*/2L) K 1
T L 2K (- 2L/m)1/2 2L* "~ 2L]"

(8.15)

A

As T—0, a/x——1+K*/2L%=cos28, as before,

(8.12). x; vanishes when the square bracket vanishes.
The low temperature disorder point locus is therefore

kaT/J =1/K==2Jy/J, +J/Jy, (8.16)
which we can write with »=J,/J; as

keT/Jy=flr)==2v+(1/7), 8.17)
so the initial (7=0) slope is

frn=-2~@1/7, (8.18)

which is negative, and tends to (- 4) as » ~»,, There-
fore, the disorder point locus “doubles back” initially
as shown in Fig, 3.
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FIG. 3. Graph of the dis-
order point locus kg Tp/J
versus interaction ratio
v=dy/Jy. The locus termi-
nates at ¥, =—1A2Z, For
values of # in the range
—0.7149... <r<7p there

1 are two disorder points.

By a similar analysis one can easily show that the
extra factors { } in even—odd and even—even spin
correlations (4. 2) and (4. 3) are just

{}=cos8, as T—0.

Here we have used the derivative relation (5. 14) and
the asymptotic form (8. 9) for A,

9. ANALYSIS OF INTEGRAL: SPECIAL FUNCTIONS

(8.19)

It is possible to express the integral for 2 in terms
of error functions, or equivalently in terms of confluent
hypergeometric functions (Appendix C). This enables
us to make a more systematic study, and to gain further
appreciation, of how the low temperature properties
come from the partition function integral. The exact
representation of x; obtained may be compared with that
of Sec. 7, (7.8), and an interesting Bessel function
identity extracted (Appendix D). The steps are straight-
forward, and commence by completing the square in
the arguments of the exponentials in the integrand.
After a short calculation one obtains

= SR L) exp(= K°/21) {(1 ; ﬁ) M(l 3.1 (1 + ﬁ)"’)

2K oL ["\2 2L
K 13 KV
-(1- g3 (i-52) )
K 13 K\
(s 3en() )

This form is especially suitable for asymptotic analysis
when L <0, By using Kummer’s transformation we
obtain a form which is suitable for asymptotic analysis
when L > 0:

et K 3 ( K\
A= 2K{exp(2K)(1+§Z>M<1,2,—2L 1+-ZI>>
K 3 K \?
- e 201~ £ Yuu(n, - 22 o~ )

-ow- 0o 3 5}

The asymptotic behavior of A; as 7 — 0 can be derived
from the properties of the confluent hypergeometric
function of large argument (Appendix C). The appear-

9.1)

9.2)
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ance of different asymptotic forms when L is negative
according as L = - 3K is of some interest.

L>0: From (9. 2)

L
Ao~ BeKL{exp(ZK)— exp(~ 2K) sgn(l - 2%)} (9. 3a)

L »
~ Z—L 51;221{, for large L (9. 3b)
+
~ exp(L ZK), for large K and L. (9. 3¢)
8KL

This is in agreement with (6.4), (6.5), and (8. 6¢).

L <0: We write out separately the three leading order
terms from the three hypergeometric functions in (9.1):

exp(- L) exp(— K*/2L K
R~ R(LIK(EJ%(W)”z ){Sg“<1+52>—1+2}'

9.4)

L <-3K: I L <- 3K the contributions from the first
two hypergeometric functions cancel, and the asymp-
totic behavior is determined by the same hyper-
geometric function as appeared in the integration by
parts development of Sec, 7. Moreover, the correction
terms are exponentially small (Appendix D), so that
we are justified in differentiating to get x; = ax,/3L as
in Sec. 8.

- 3K <L <0: The leading terms in (9. 4) cancel when
— $K <L <0, and we must retain higher order terms in
the asymptotic expansions of the hypergeometric func-
tions, It is now crucial to observe that the required
extra terms in the asymptotic series are preceded by an
exponential function (C8), The remaining dominant
contribution is actually from the first hypergeometric
function. We obtain

exp(2K+1L)
-)8KLI1+K/2L| °

}\0"' ( (9. 5)

L =- 3K: In this borderline case when the central
term in (9. 1) drops out, we have contributions from
both the remaining terms:

no~m /% exp(3K/2)/4K3/2,

We note that as T— 0, the specific heat per site
C—3Fk,,

(9.6)

10. GROUND STATE ENERGY

The ground state energy per site can be extracted at
once from (9. 3), (9.4), (9.5), and (9. 6):

E= (=) + 3),
E=3(J, +J1/2Jy), Jp<- 3,

Jyz = 2y, (10. 1a)

(10.1b)

One can, of course, derive this result directly by
minimizing the classical energy via the total Hamil-
tonian of the system (of 2N spins):
N
H={(=) 72)1 {71(co8by;.1,25 + CO803;,2401) +J2 COSBy;y, 5501

(10.2)
The ferromagnetic solution (10. 1a) comes from setting

all angles 6 equal to zero, and is valid for J, > — 3J;.
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For more negative values of J, <~ %JI one finds for a
given triple of spins 2i~1, 2{, and 2/ + 1 that the spins
are coplanar, with the odd spins being symmetrically
disposed about the central even spin and making a polar
angle 6 with it, where

cosf=~J,/2J,. (10.3)

Spins involved with a given nnn link (Fig. 1) maintain
rigid relative orientations, in a common plane, But
there is no correlation between the orientation of the
planes associated with different nnn bonds, except that
adjacent planes must contain a common odd numbered
spin. In this sense the ground state is disordered, with
the pair correlation function between nnn spins being
given by (8.12). Also, the pair correlation between an
even decorating spin and an adjacent odd spin is just
cosd, from (4, 2) and (8.19).

The ground state energy is plotted in Fig, 2 as a
function of » =J,/J;. The change over from an ordered
ferromagnetic state to a “disordered” ground state
occurs at the critical ratio #,=— 3, at which point
E=-3%J,, and the left- and right~hand branches of the
graph meet with common slope. The maximum value
of the ground state energy when J, <— 3J, is E=—-Jy/V3,
and occurs where the interaction ratio ¥ =-1/Y2, which
is precisely the value 7, at which the disorder point
locus terminates at zero temperature,

11. DISORDER POINTS

We gather together in this section previous results
for the disorder point locus, along which pair correla-
tions between nnn spins vanish. The desired locus is
graphed in Fig. 3. The complete locus was determined
numerically by selecting a value of K (=J;/k,T) and
finding the corresponding value of L (=Jy/RgT) for
which A in (8. 2) vanishes. The analytical form of the
locus at high and low temperatures is confirmed by

these numerical results. From (6. 2) and (8. 16), these
forms are:
at high temperatures, 1/K~-1/37, (11.1)
at low temperatures, 1/K~-2v+(1/7)=f), say.
(11. 2)
The locus terminates at
r=vp=-1/VZ, where cos20=0, (11, 3)

at which point the slope is negative, f'(#p)=-4, so the
locus “doubles back” initially, as remarked previously.
For values of 7 in the range

-0.7149 - - <¥ <7, (11, 4)
there are two disorder points, and at the lower limit of
this range, 1/K =0, 04(5). The over-all shape of the
disorder point locus is similar to that for the “guadru-
polar” disorder point of Thorpe and Blume. ! The result
that 7, differs from 7, is thought to be peculiar to one-
dimensional models, as may be surmised from inspec-
tion of Fig. 1 of Ref. 11, which shows typical disorder
and critical point loci for some soluble two-dimensional
models,
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APPENDIX A: CORRELATION FUNCTIONS

It is straightforward to establish the procedure for
calculating the general correlation function (P,(cos8))
when even—odd and even—even spins are involved,
Expanding P,(cos6) by the addition theorem, we can ex-
press the desired correlations as sums of (2n+ 1) terms
as follows:

(P,,(COS 921',21'”'»

<21’£+1) 22” nym\'< ){fdQZ; f1921 fdQZHI

*
X{M%)]Yﬁm(gu)yn'm'mzm) exp(~ BHy;_q,21)
No(4m) '

X exp(= BHa;.1,241) €Xp(- BHzi.zm)}
{fdQZHr n" ’(921+r)Ynm(QZi+r)Y00(Q2i+7)}

for even—odd spins with » =2k +1, and

(A1)

<Pn(COS92i,2i+r)>

47 A
~(5255) BB 2 oo Jann, oo,

Y5 (R
X( 7\0§4W;2'1’) Y (Q0:)Y ome(Q95.41) €Xp (= BHy5.4,2:)

X exp(~ BHy;_1,2441) €Xp (- BHz,,zm}

{ﬁ921¢r-1 fdQZ:or fdQZ:*niY (Qin-i)

Yoo (92i+r+1)

)\0(47‘,)2 Xp(— BH2i+r-1,2i+r)

X Ynm (QZiw)(

Xexp(~ BHZLW-I, 2i+r¢1) eXp (— BH2i+r,2i+ro1)} (A2)
for even—even spins with » =2k +2, In each case &
denotes the number of J; bonds involved. These bonds
can be integrated out to give the factor (x,/x), at the
expense of introducing the sums over #’ and m’. The
external factor (47) cancels the zero order spherical
harmonies Yy = Y3 =(@n)"'/%, In the case n=1, we will
show that the sums over n' reduce to three equal terms
with »’ =1 and m’ =21, 0, and thence identify the curly
bracket factors in (A1) and (A2) with corresponding
factors in (4. 2) and (4. 3). With obvious abbreviations
for the curly bracket factors, the above expressions
have the structure

- Ant
<P (005621,21+2k+1» - (27l+ 1 ! E E ( n) nmy n‘m'{énn'émm'}’

msan a'm’ \ Ao

(A3)

- Ant
<P (COSGZi 21+2k+2)> - (21’l+ 1) t m@n ol (h;) [nm.ﬂm'lnm'nm

(Ad)

To evaluate 1, s, expand each of the exponential
Boltzmann factors using (3. 1) and perform the integra-
tions over $;_5, €y;, and Qy,,; in turn:

4
nm,nm < 77> de2i-1 fdQZ: fd921+1Ynm(92;)Y (Q2i+1)
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X 'Z.‘ aY . u(ﬂo,_1) ﬂ(le)
X E Af,qx)rY:ivmiv(in-i)YnivmiV(sz)
nlvpiv

Z} oY oy (S0 VY How (294 41)
ﬂ

47
= / u‘n"hl(lo")un"' /‘dQZZ (921) " "(921
)\0 nm®  m?

XY e, ,,,(sz) /(192i+1Ynlml(Q2i+1)Y . N(Q’)l_*l)

XY Eu w(Q;41). (A5)

In the case n =1, the integral over $y; is straightfor-
ward with the results
A1 Y (050 Y (R0

:7\
k2 T

N _3_)1/2 -~ (' —m" + 1) " +m” +1){17?
an) e T e T 1) (2" +3)

(" = m")n" +m") | 1/?
F g Y a
Mot ety m { @ -DE D | [

47
Iig, ntme = N

(A6a)

Ly o= 23 g3 /(JQZMY (Rsu) Y (s g)

A o

o3 1/2 - f(n”+m”+1)(1 "4+ " +9) |1
o = B Yy, o) (" +1)(2n" +3)

(" =m"Yn"-m"-1) “2
2n" -1)2r"+1)

ey Y ey, mnﬂ{
(A6b)

4r
11-1.n'm': T{) n%,, un”Kr(z’O’)ﬁQhA Yr/m (Q"HI)Yn"m"(QZiH)

3 1/2 . (Vl”-”l”""l)(f’l”"”'7’,+Z) 172
X E PPN Yn"+1, m*-

2nr” +1)(@2n" + 3)
- G +m"Y " +m" = 1) |12
Harot -1, m"-1 (2” " _ 1)(2'1 "y 1) .
(A6c)

Next, perform the sums over m” of which there are
six (drop the primes and the common arguments
Q,;,1 of the spherical harmonics)

e+ 1) +m+1) 172
EYanrnl, {( )( )} =

(n+1)cos®

2r+1)(2r+3) 47 !
(A7a)
(n=m)e+m) |12 __ncosd
E Vo ¥, {(272 1){(25 + 1)} T 4y 7 (ATD)
m+m+Vm+m+2)172
? Yanrtvi,mq{ (27Z+ 1)(2}2 + 3) }
— (n+1)exp(-i¢)sind
4 ) (ATe)
(2=~ m)m—m— 1) 1/? _ nexp(—i¢p)sind
% Yom "-1'"**1{ @n-1)2n+1) } T 4
(A7d)
(n—m=+1)n—m+2)) 172
%: Y,.mY:q, m-l{ (211 + 1)(2n + 3) }
_ (n+1) exp(i¢) sinb (ATe)

a7 ’
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25 VoY

j(n+ )+ =12 ~nexp(ig)sing
-1y m= 1( (2n-1)(2n+1) - A ’

(ATf)
Express the rhs in terms of spherical harmonics ¥},
and insert in (A6). The remaining integrals over ;4
now involve products of ¥, with spherical harmonics
of degree 1, viz,, . So the Iy, ., vanish unless

n'=1and m’ =m. Moreove1 the three remaining terms
Iin, 1m are equal:

2 e l

Lyt = Gin’ﬁmm'{ n:EO E—)\:— (G2 + D ptmsy +”'"“n"-1]5-

(A8)

Now in (A3) and (A4) the sums over »’ collapse to a
single term »n’ =1, and the sums over /»’ and m reduce
to multiplication by 3, which just cancels the (22 +1)
factors., The final expressions are just (4, 2) and (4, 3),

APPENDIX B: BESSEL FUNCTIONS

The spherical Bessel function 7,(z) required in the
text is defined by

L

L 172
in(Z) :(z_W) In*i/Z(Z)

z
®© L\27
TG w0 DO+ DT+ +3)
B z® 32°
T 1435 (2n+1) 11 (2r+3)

(l 242
et 3)@eT5) 4’} (B1)

An alternative representation in terms of exponential
functions is

oo (LM e =)ot

e

(nt7)!
rte=-)1(22)

(B2)

so that #,(z) = (sinhz)/z etc. This form is useful for
obtaining the large Iz| behavior of 7,(z). The spherical
Bessel function satisfies the recurrence and derivative
relations

2r+1) . ,

‘_—Z-_) In=lpag = Tpaq, (Bsa)

(2” + 1) - Hzn-i + (” + 1)172-»\) (BBb)

. n+1\. din

Zn-1:( z )Zn+;1‘;, (B3e)

, -n di

et :(—z—) + Zl—f (B3d)
In particular ¢ =4;, and in general

1 d \"[in@)] _ Znem

(z dz) [ Z" | Tamme (B4)

In addition to the integral representation (5. 3) and the
expansions (5. 2) and (5. 4), the following summation
formulae are employed in the text:
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ZT)O (2n+1)[7,)F = (sinh2z)/(22), (B5a)
%70 =) @n+D)[iy2) = (B5b)
E (=Yl + 1)@ + 1)) P = - $2% (B5¢)

APPENDIX C: CONFLUENT HYPERGEOMETRIC
AND ERROR FUNCTIONS

The confluent hypergeometric function is defined by
re) ssTlatn) 2"

M b:
la, b;2)= T(a) w0 L (b +n) nl " (C1)
Kummer’s transformation is
M(a,b;z)=e*MD - a,b; - z), (C2)

For large |z!| we have leading terms in the asymptotic
exXpansion:

Rez >0, Ma,b;z)~ %2_; e?zasb, (C3a)
Rez <0, ‘W(a’b;z)~F?b(bT);)(‘ z)™, (C3b)

The error function and the complementary error
function are defined by

2 / * )
erfz = — exp(- %) di, C4a
= J. p(= 1) (C4a)
2 /’ i 2
erfcz = — exp(- )di=1- erfz, C4b
= J. p(- 1) (C4b)
The error function has the following series
representations
2 g )n 2n+i
erfz = Vg mon!(nr+1) (C5a)
2 kad znZZn-A
== exp(~ 2* EO T BT (C5b)
=2 7‘ Y Lsnag 12(2%) = Typag s2(29)]. (C5c)

The error function is related to the confluent hyper-
geometric function by
2z 1 3 2 2z
erfz =—= M(z,2;-2") = — exp(~
o (z,3 ) V7 p(
The behavior of erfz for large z (argz <37/4) is best ob-
tained from the asymptotic expansion for erfcz. We
have

2HM(, 3 2%, (C8)

Vrz exp(z?) erfez ~1+ f} (_)”1 '3:5- i (,12”' 1) ekd)
n=1 (22 )
whence
M(z,%;-2Y)= g erfz = —g—;— (1 - erfez)
~ _\/__7_7: {1 _ exp(- z%)
2z Tz
S 1375 2)1—1)]

1654 J. Math. Phys., Vol. 17, No. 9, September 1976

This asymptotic expansion is important for Sec. 9 of
the text,

APPENDIX D: SUMMATION FORMULA FOR BESSEL
FUNCTIONS

As a by-product of the analysis of Secs. 7 and 9 we
obtain a formula summing a power series whose coeffi-
cients are spherical Bessel functions, a result we be-
lieve to be new. By comparing (7. 8c) and (9. 2) in the
text, we observe that they contain a common hyper-
geometric function on the rhs, which may be cancelled
out, leaving the desired Bessel function sum:

ZO <:2713> i (2K)
3 K\?
-(f—\) [exp(ZK) (1 + 2’%)11(1,5; 2L(1 + ZLL) )

2
- exp(- ZK)(I - %)M(l,g;— 2L (1 - EKZ> >} 1)

Setting
x=-K/2L, v=2K, (D2)
we have an expression for the generating function sum

é{)x"in(y) = [exp(— ¥)(1 +x)31<1 é'— = (1 +x) )

—exp(v)(1~ x)AI(l,—g;% % 1 —x)2>}/(2x')_ (D3)

By Kummer’s transformation

3 ) , 3 1y 2>
HZ; (v) = exp| by (v+1/x)][(1 +;\)U<2,2,— 5% 1 +x)
A8 1y oy .
- (1—3)3[(2,2,—- PACED) )J/(m). (D4)
In particular if x =1,
E (v)=exp(= )M, 3;2v) =exp(y)M(G, 2:-2v),  (DH)

n={
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We present a new technique for calculating the grand partition function and all quantities of physical
interest in the uncorrelated jet model. The method, which is also valid in the large- p; region, consists of
the numerical evaluation of the appropriate integral representation in the complex plane. We analyze in
detail the difficulties associated with this approach and show how to overcome them. The numerical results

are checked with a new high energy expansion for the grand partition function.

1. INTRODUCTION

In the simplest version of the uncorrelated jet model
(UJM), 1=° the normalized inclusive cross section for
the reaction ¢+ b —~c +X is given by

L do_ _r QP
Oror di(R) QP

f&T)

where

w©

Q) =22 (¢"/n)2,Q),

n=2
2@ =] [lanpareDe (@22 »)),

l3
A (P) = 55

(We consider a theory with only one type of particle with
mass m, k'#Vs/2.) P* denotes the total four- moment-
um of the incoming particles @ and b, whereas p”
=(p2+pH)1/? is the transverse component of p. Through-
out the paper we work in the ¢, m. system (P = (Vs, 0)),
keeping the z axis as the beam or longitudinal direction.
The coupling constant ¢ is a free parameter. We will
assume in the following that the function f(p) (which

cuts off transverse momenta) is normalized according
to

[/ @m)*] [, dp pr(p) =1

whenever f(p)#1.

(1.2)

Every physical quantity in the UJM can be calculated
once we know the grand partition function €,(®) or the
partition functions Q,(Q) for all n= 2,° Therefore the
basic problem is to evaluate Q,(Q) or ©2,(Q) in some
way. The following three techniques to do this played a
central role during the last ten years:

Approach 1: Lurcat and Mazur® used the method of
steepest descent to approximate 2,(®) in the case f=1.
The result is valid for large »n with corrections of the
order O(1/vn). Later on, this procedure has been gen-
eralized to f#1% and to 2,(Q). *® (The analytic expres-
sion for €, obtained in this way is valid at high
energies, )

Approach 2: Another method to obtain an analytic ex-
pression for 2,(®) at high energies is presented in Refs.
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4 and 5. These authors use a version of the Riemann—
Lebesque lemma. It has been shown by de Groot® that
one can evaluate analytically £, for = 2 in the high
energy limit, provided the transverse momentum of the
produced particles is fairly small,

Approach 3: One may apply Monte-Carlo techniques
to handle the 31— 4 integrations in ©,(Q). 2

Despite their usefulness, these methods suffer from
the following disadvantages:

(a) The errors introduced in the approximation
schemes 1 and 2 are cumbersome to estimate, 571112
The corrections to the leading asymptotic behavior of
both the partition function €2, and the grand partition
function €, may be large even at ISR energies. See
Figs. 2—4 and Ref. 11,

(b) Method 2 is not valid in the region where produced
particles have large transverse momentum, See Ref,
5 and Fig. 2. This large p; region provides an impor-
tant test for theories of strong interactions at ISR
energies, 1914

(c) Monte-Carlo calculations are exact in principle.
However, this method can be very expensive in terms of
computing time. If the latter is scrimped, the results
can have large statistical errors. ?

It is the aim of this article to present a technique,
different from Approaches 1—3 above, used previous-
1y to evaluate 2,(Q). Our method does not suffer from
the drawbacks (a)—(c) just mentioned, and is valid for
all @* which are not too near the edge of phase space.
(See Sec. IL ) It consists of a numerical evaluation of
the integral representation’

1 ¢ 3
%@ =15 /dzzmzcm /0 % x Ty (¥Q 1)
x{exp g®(z,x)]- 1 - g®(z,x)},

where

(21,,)2 f dp pJyh)Ky(2m o)f (P)
0

®(z,x)=

Q=@ - NV Qr=(QL+ QYW mp=(m+pH/2,
(1.3)
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Iy(z) and K,{(z) are modified Bessel functions, whereas
Jy(x) is a Bessel function of the first kind. ¥ The path €
runs from — i< +¢ to i +e, ¢ > 0. In Eq. (1. 3) there is
essentially a three-dimensional integration, one of the
integrations to be carried out in the complex z plane.
We also want to stress that the approximation schemes
1 and 2 described above require, in general, one-
dimensional numerical integrations. {Besides the
numerical solution of a transcendental equation in Ap-
proach 1.} As our method delivers an exact result, we
believe that the two additional integrations needed here
are worth the additional effort,

In our approach, we do not know $2,(¢)) analytically,
so we cannot directly calculate other quantities from it
by, say, differentiation with respect to g. However,
there exist integral representations for these quantities,
similar to (1.3). They all have the form

c o
71%/ rlzzlo(zQL)f dx xJy(xQ Y F & (2, ). (1.4)

0

F[@{(z,x)] depends on the specific quantity considered,
whereas ¢ does not: ¢ plays the same role in numerical
calculations as does the grand partition function QK(Q)
in analytical calculations. Once we know &, we may
then calculate everything through the double integration
in Eq. (1.4).

The following discussion is restricted to the evalua-
tion of 2,(Q). In this case we have F[®]=exp(g®)~-1
—g®. However, other functional forms of F[&] could be
handled equally well.

The paper is organized as follows. In Sec. 2 we de-
scribe the difficulties one is faced with in our approach
and show how to get rid of them., We then illustrate
with a numerical example our method to evaluate $,(®).
In Sec. 3 we present a similar (but simpler) second
way to evaluate €, in the high energy limit @ =~ < up
to terms of order O[Q%¥"!]. The sample case from Sec.
2 is then evaluated with this method and compared with
the first (exact) one. In the last section we summarize
our results and propose a splitting of phase space
according to presumably relevant calculational schemes.

2. EVALUATION OF &, (Q)

The main difficulties connected with the numerieal
evaluation of the integral representation for Q, are the
following:

(i) The integrands in (1. 3) are highly oscillating,
especially in the large pr region, Formula (1. 3) is
therefore not well suited for simple numerical integra-
tion, This is the most baffling feature of our approach.

(ii) One of the integrations has to be carried out in
the complex plane from — ix +¢ to 7~ +e. Which path
should we choose?

(iii) We need the values of the Bessel functions K(z)
and /,{z) for complex z. Computer programs in general
require z to be real. Therefore we have to supply a
method for calculating K;(z) and I,(z).

We dispose of these difficulties in turn.
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b A
[ o) dx ~ b-a s Aé“’(p[(b—'g)x;‘”"+ ’_’i_”:l
g 2 w1 2 2

A. Integration of rapidly oscillating fucntions

The integration of rapidly oscillating functions is an
old problem in numerical mathematics, and there
exists a long list of papers which deal with it in special
cases like Fourier transformation, ¥ Qur oscillating
functions, however, are only approximately of the
trigonometric type, and we could not find in the litera-
ture a method directly applicable to our problem. 18
After many trials we finally found it most convenient to
proceed in the following way. We first note that the
oscillating integrands are of the type

hx)==g(x)x{sin(px) or cos(px)}, 2.1)

where g(x) is smooth and slowly oscillating. Further-
more we recall the Gaussian rule for numerical

. . 2

integration 0

(2.2)

The coefficients 4,"’ denote the weights (independent of
¢), and ;") are the roots of the Legendre polynomial
of degree N. The Gaussian rule delivers the exact re-

sult if @ (x) is a polynomial of degree 2N -1,

We shall use the following empirvical faci: For N=64,
the rule (2. 2) applies also (with an accuracy of more
than = nine decimal figures) to i{x) as given in (2. 1),
provided

|b—al =100/p (2.3)

for large values of p. For small p, there is no danger
in using the Gaussian rule,

Stated differently, (2.2) applies to oscillating func-
tions which are of the type in Eq. (2.1) provided that
the interval {«, b} does not contain more than = 15
periods of the oscillating function. The fact that the
Gaussian rule also applies in this case with a high ac-
curacy is not so surprising: Remember that for N =64
(which is the case we are considering) the result of the
numerical integration is exact whenever ¢(x) is a poly-
nomial of degree 127. The assumption on the smooth-
ness of ¢(x) in Eq. (2.1) then just guarantees that i (x)
can be approximated very accurately by such a poly-
nomial in the interval (@, b]. Consult the Appendix for
illustrating examples.

Our rule has to be taken as a guide and (2. 3) must
eventually be improved, i.e., |b—al may have to be
smaller than is allowed by (2. 3). The need for an im-
provement in our calculations depends on the function

F{p) chosen in (1. 3) and on the region in momentum

space one is interested in. (See below. )

Now we can get rid of the problem with oscillating
integrands as follows. The path C will be fixed in (i)
below. Split the region of integration in the variables
(z,x) into surface elements such that in each element
(2. 3) is true with respect to x at fixed z and with re-
spect to z after integration over x in Eq. (1.3). The
evaluation of & has to be carried out analogously.

Remark: The function & has to be evaluated with an
increasingly higher accuracy as @“ reaches the edge of
phase space. The reason is the following: Q,(®) goes to
zero as " reaches the edge of phase space. There-
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FIG. 1. The path C is the one chosen in the evaluation of the
integral (1.3). The value of the cutoff P, depends on the accu-
racy required for the result,

fore the oscillations in the integrand have to enforce the
vanishing of the value of ©,. The computer has to add
and subtract (many times) large numbers in such a way
that the result becomes small, Hence in order to obtain
a reliable result the quantities K;(z), I;(z), and &(z,x)
must be very accurately known. Note that small round-
ing errors in &(z,x) rapidly become uncontrollable
since ®(z,x) is exponentiated in Eq. (1.3). [In the cal-
culations carried out in Sec, 2, Part D, the accuracy
required for K,(z) and &(z,x) was 8—10 decimal
figures. | This fact will most probably impose a limit on
the application of our technique for " near the edge of
phase space.

B. Choice of the path C in the complex plane

Since ®(z,x) is analytic in z for Rez > 0, Cauchy’s
theorem tells us that the value of the integral over z in
Eq. (1.3) is independent of the choice for the path C,
provided the latter runs from — ¢« to i« and lies in the
half-plane Rez >» 0. However, life is not so easy if we
are working with the computer: Due to rounding errors,
certain paths C will be totally unsuited for numerical
integration and will render meaningless results, al-
though, according to Cauchy, we should always obtain
the same answer.

For our application!® we found it most convenient to
choose the path shown in Fig. 1. (In the actual cal-
culation, we only need to integrate over Imz > 0. The
location of the cutoff point P, depends on the accuracy
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required for the result. See Sec. 2, Part D.) It is cer-
tain that there exist other choices of C, equally well
suited for our purposes, and it may well be that there
exists even a better choice than ours. We have no com-
pelling reason for our decision, but only the following
arguments:

(1) The calculation with our choice of C works well
and agrees with another method for the evaluation of
2,(Q) at high energies (see Sec. 2, Part D and Sec. 3).

(2) We were interested in our application!® in the
limit where @, becomes large, This limit is dominated
by the behavior of

explg®(z,x)] - 1~ g®(z,x)
near z =0, We therefore expect to pick up the main
contribution to the integral (1. 3) at small z. To deter-
mine what “small 2” means in our case, we proceed as
follows.

The integration over z (for fixed x) has the form
f € dz 2L (zQ 1)

with p=1—3 at high energies and not too large values

of x. (We chose g=2. This corresponds to a total cross
section which behaves like ~const/Ins at high energies. )
For a fixed value of p, there exists a number R, such

that the integral

[ “Rdz z1,(2Q),),
Crp={z|2=Rexp(i8), -7/2<6<1/2, R fixed} (2.5)

(2. 4)

approximates (2. 4) within 1% for all R=> R_,,. The value
of R, depends on p and @, but lies in the range
0.1<R,;,<0.2for 1<p<3and 30<@g, <50, (These
are, in appropriate units, the values of @, appearing

in Ref, 15.) We therefore expect, for our choice of the
value of R, to pick up the main contribution to the in-
tegral from the semicircle Cpg,

The path C shown in Fig, 1 is suited for the evalua-
tion of the integral (1.3) at high energies and for a
definite value of the parameters in the UJM, It would be
advantageous to know whether this path is suited for the
evaluation of £,(Q) in other regions of momentum space
and (or) for another choice of the parameters. We do
not examine this problem in the present article.

C. Evaluation of the Bessel functions /,(Z) and K, (Z)
for complex argument

According to our choice of the path C and for @, <170,
we need to know the values of [;(z) for 1z| <14, Rez
>0, and for z=ix, |x|=>14. For |zl <14, a power
series expansion for /;(z) is adequate and gives no
problems in what is relevant to the accuracy of the re-
sult. 2! The evaluation of I,Gx), x real, is easy. So we
are left with the calculation of K;(z) for complex argu-
ment. The simplest way to proceed is the following. 22
We match the representation valid for small |zl, i.e.,

A2 E(E) - 26)

Ky(z)=
1 1 1
x(v!)2{1+2 +eeat u}
C = 0571
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)
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FIG. 2. Q,(@) is plotted as a function of @ at fixed @,
=50(GeV/c) for the parameters given in (2.6). : Exact
result from (1.3), ~——--— : Approximation (3.1). -----: Lead-
ing asymptotic behavior (3.2)

with the asymptotic expansion

am\!/? _ 1 12.3?
KU(Z)N(?) R NI A €

|argz| <37/2, |z|—=

at some fixed value R=1z|. The discussion of point

(i) above shows that the accuracy required for K;(z) and
I,(2) depends on f(p), and on the region in momentum
space in which we want to evaluate 2,(®). If we work on
the computer with extended precision variables (~*35
significant figures), we may choose R=18. This results
in at least 13 decimal place accuracy for the value of
K,(z). With double precision variables (=16 significant
figures), one should use®?> R~9, The accuracy then
drops to nine decimal figures, %

This concludes our discussion of the difficulties (i)—
(iii) enumerated above,
D. Details of the calculation. An example

A few comments concerning the details of the calcula-
tion are in order at this stage.

As already pointed out in the Introduction, we need to
calculate & only once for a given choice of the param-
eters in the UJM, (We may even use the same @ for
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30 1

| Q=0

201

20 ' 50
o (52

FIG. 3. Q,(Q) is plotted as a function of @ at Q,=0. Param-
eters and meaning of the lines are the same as in Fig. 2.

diferent values of the coupling constant g, ) & may then
be stored, e.g., on a tape, and recalled for the re-
maining integrations over x and z. In what concerns the
integral over z, we actually need to integrate only in
the upper half-plane Imz = 0. The contributions from
the lower half-plane may then be obtained via the
Schwarz reflection principle.

We show in Figs. 2—4 an example of our calculations
carried out along these lines. The values chosen for
the parameters are

T T T T T T gl

20 50

Q [GeV]
C

FIG. 4. 9,(Q)/@} is plotted as a function of @, at Q7 =0. Pa-
rameters and meaning of the lines are the same as in Fig. 2.
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627 1 GeV\~
f(P): RV 3
7 {(1+p) < c ) 2.6)
g=2, m:l%_'eg—v.

(We have also drawn in these figures the result from
two approximate calculations to be discussed in the next
section. )

Those curves in Figs. 2—4 which were obtained via
the representation (1, 3) have been calculated using
Py=0.4 in Fig, 1. We remark that the values so ob-
tained agree with the “improved high energy expansion”
from Sec. II within 3% or better for @,=0 and Q;

2 50GeV/c (Fig, 3). For the values in Fig. 2 we find a
3% discrepancy at @ .=5GeV/c. This discrepancy then
increases and becomes 15% at QTzloGeV/c. It should
be noted, however, that the “improved high energy ex-
pansion” cannot be true at large @ ; since it does not
respect energy—momentum conservation (see Sec. 3).
The 15% discrepancy should therefore not be considered
as a defect of our exact method., In fact we feel that the
above comparison of these two different methods to ob-
tain 2,(®) reveals that the numbers we obtain from the
representation (1. 3) are trustworthy at least at the level
of a few percent,

3. IMPROVED HIGH-ENERGY LIMIT

In view of the subtleties involved in the numerical
evaluation of (1,3), it may be advantageous to have
available a simpler method to calculate ©,(Q) approxi-
mately. Although the method presented below will be
valid only in the high~energy limit and for @ not too
large, it serves as a welcome test of the procedure
described in Sec. 2. At the same time, the technique
will go far beyond the leading order approximations
mentioned in the Introduction,

The expansion of ©, for high energies reads™ !

1 ® 1 2¢D_q (x)
Q@)= s f dxxJO(xQT)m(%;_)
0 5w

Xexp[_gDO(x)]{1+O( 3 )}, QR — =, @rfixed,

where

®(z,x)=~2D_i(x) In(mz) - Dy{x) + O(z*1nz), z—0

and
D-i(x): (gﬂ)3.£ dPPJo(xP)f(P),
© Cm
D) = fo () nE) | 5.1)

®(z,x) is defined in (1. 3),

We note that the first part in (3. 1) contains only a
two-fold integration: Difficulties (ii) and (iii) described
at the beginning of the last section have disappeared.
The approximation scheme announced above consists in
the numerical evaluation of the integrals in Eq, (3. 1).
An expansion similar to Eq. (3. 1) exists for all quanti-
ties in the UJM, The integral representation in Eq,

(8. 1) presents therefore an extremely simple way to

1659 J. Math. Phys., Vol. 17, No. 9, September 1976

obtain a relatively accurate answer and provides a
check for the exact results (at high energies).

In Figs, 2—4 we compare the values of {2, evaluated
by three different methods:

(i) exact calculation as described in Sec. 2,
(ii) approximation according to (3, 1),

(iii) 1ead}ng asymptotic behavior of £, at high
energies? 2

o~E0(®) 1 Q. \ 2 1
%(@)= 8rm2D”(0) g[T'(2)F (E’;—) In(@./2m)

- % 1 )
Xexp<4gD.'.'1 (0) In(@,, 2172)){1 * O(anL )
Q r fixed

QL#OO’

where
xZ " 4
D4(x) =157 D4(0) + O(*), x—0
and

D1’1(0)=ﬁ;7)—3'/0 ap pf(p).

Remavks: (1) The size of the terms neglected in the
two high-energy expansions presented above [Eqs. (3.1)
and (3. 2)] are not the same in both cases. Let AQ,(Q)
be the difference between §2,(®) and its approximating
expression, Then one finds that AQ, (@) is of the order
0(Q%%) and 0(Q%-*/(1nQ;)?) in Egs. (3.1) and (3.2),
respectively.

38.2)

(2) The difference between the exact result and the
leading asymptotic behavior (3.2) diverges as @, — =,
as seen in Fig. 3. This is due to the fact that this dif-
ference is of order 0(Q%¥-%/(In@;)?), as is mentioned
in point (1), For completeness, we show in Fig, 4 the
function

(1/Q3)9%(@)

which appears in actual calculations of physical quanti-
ties. Clearly the exact result and the leading asymptotic
form coincide in this case as @, — =, their difference
being of order O(1/(Ing,)) for g=2,

(3) The drawback of the expansion (3. 1) is the fact
that we have lost energy—momentum conservation
which was built into the representation (1. 3). However,
Fig. 2 shows that this affects the value of 2, only at
fairly large transverse momentum @, for our choice of
the parameters m, g, and f(p).

(4) It would be easy to include correction terms in
the expansion (3.1). We did not check, however, how
they affect the result at large @ 1.

4. SUMMARY AND CONCLUSIONS

(i) We propose to use the integral representation
(1. 3) for the evaluation of the partition function £2,(Q)
in the UJM,

(ii) The most severe difficulty of this procedure is
due to the rapidly oscillating integrands in (1.3). They
are not well suited for naive numerical integration.
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FIG. 5. The region of nonvanishing @, (Q) is partitioned ac-
cording to presumably relevant calculational schemes,
: Monte-Carlo technique. : Integral representation (1.3),
: High-energy approximation (3.1). : Leading asymptotic
behavior (3.2), statistical methods. %8 See also Ref. 5. No
scale is given on the coordinate axis.

(iii) This difficulty can be overcome by using the
empivical fact that the Gaussian rule for numerical in-
tegration (2. 2) also applies for highly oscillating func-
tions, as amplified in Sec. 2 and in the Appendix.

(iv) Most probably there will be a limitation to the ap-
plication of our method near the edge of phase space
(large @, or small ;) due to rounding errors.

(v) The simpler representation (3.1) serves as a
quick check for the exact calculation at large @, and
moderate @ r (see Figs, 2—4),

{(vi) We conclude that different techniques are ap-
propriate for the evaluation of Q,(®) in different regions
of phase space, We propose a splitting of phase space
as shown in Fig. 5. (The Monte—Carlo technique may
be useful near the edge of phase space because of the
small number of particles produced. ) For the scale on
the coordinate axis in Fig. 5, see point (vii).

(vii) It would be highly useful to make the statements
“large Q;,” “moderate @r,” “near the edge of phase
space, ” as used above more precisely. Ultimately we

TABLE I, Comparison between exact and numerical integra-
tion of the functions ,;(x) defined in the Appendix. We tabulate
the number of decimal figures to which the numerical integra-
tion agrees with the exact result. The integration interval is

[0, 100/p].

3 5 10 30 50
Functio
By (x) 13 13 13 13 13
Ty (x) 14 15 13 14 15
hy () 16 15 14 15 14
hy(x) 9 12 12 13 13
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TABLE II. Comparison between exact and numerical integra-
tion of the functions #,(x) defined in the Appendix. We tabulate
the number of decimal figures to which the numerical integra-
tion agrees with the exact result. The integration interval is
{10, 10+100/p].

p 3 5 10 30 50
Functio
hy (x) 13 13 13 11 13
hy (x) 13 13 12 12 13
hy (x) 13 14 15 11 13
hy (x) 13 14 14 12 13

would like to supply the scale on the @;- and @ r~ axis
in Fig. 5. We are not able to do so.
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APPENDIX

In order to illustrate our empirical rule (2, 3), we
present in Tables I and II a2 comparison between exact
and numerical integration of the following four
functions:

hy(x) = cos(px),
hy(x) =x° sin(px),
hg(x) = exp(-x) sin(px),

ly(e) = 40{(—1%52—)3 sin(px) - p cos(px) }expm

=Ry (x) sin(px) + hy (x) cos(px).
Note that
J hylxydx = - 40 sin(px) exp[1/4(1 +x°)?] + const.

The tables give the number of decimal figures to which
the numerical integration

b 64
/ o) dx = 2 5 ) A,:e‘“h,[(b; )x,;64> + b;”]
a

k=1

agrees with the exact value, The integration interval
was chosen to be [0, 100/p] in Table I and (10, 10+ 100/
p] in Table II,

A particularly interesting example is the function
hy(x). Although &, (x) is sharply peaked at x = 0. 42
(value at the peak =12, 4), the result for p =5 is still
accurate to 12 decimal figures. Note that in this case
the integration interval in Table I is {0, 20} and contains
therefore both the peak and the tail of &y {x).
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A conflict between unitary implementability of local gauge transformations (kind one) on the one hand and
certain properties of sets of localized states on the other is deduced in the axiomatic framework of

relativistic local quantum field theory.

I. INTRODUCTION

In this note we wish to study whether local gauge
transformations (of the first kind) are kinematical
transformations (in the sense defined by Jauch!) in a
relativistic quantum field theory with localized states.

It has been known for some time that, in a local field
theory, it seems to be difficult to obtain representations
where both the Poincaré and the gauge group are uni-
tarily implemented. For example, dell’Antonio? studied
the incompatibility of unitary representations of a gauge
group with certain types of (canonical) representations
of field operators. In our, rather different, approach
we study the conflict between the unitary representabili-
ty of local gauge transformations on one hand and certain
properties of localized states, on the other. In our study
we shall use an algebraic field theory framework.?® We
denote by 7 () the local field algebra associated with the
open and bounded region £ of space—time. Without loss
of generality we can assume that 7(2) has been already
extended to a von Neumann local field algebra,

2. PREPARATIONS
Following Knight, * we start with

Definition 1: A state 19) is said to be localized in
itf @IFIY)={0IF[0) for all F& #(8’), where 7(’) is
the algebra generated by all 7(R2,) with £, spacelike
separated from .

We then easily establish the following:

Lemma 1: 1f U is any unitary operator belonging to
F(82), then the state [§)o=U10) is localized in Q.

Proof: | Fli)g=QIUFUI0)=QIUTUF +U'F,U]l0).
But if F < 7(Q') then, by local commutativity, [F,U]=0;
hence @I F ld)q ={01F10). QED

We use this result to deduce

Lenumna 2: Let [ o={U10)IU<c 7(Q), U unitary}. Then
[ o is a dense set.

Proof: Since any element of a von Neumann algebra is
a linear combination of unitary operators, the linear
span of /, contains the set R={FI0)|Fe 7(Q)}. The
Reeh—Schlieder theorem tells us® that £ is dense. But

ZQD linear span of /o5 R;

hence /  is dense. QED
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This lemma leads to the important

Theorem 1: Subject to the usual assumptions of local
relativistic quantum field theory, the set of states
localized in any § (as specified by Definition 1) is
dense.

Proof: Clearly, every element of / is a localized
state and so the set of all localized states contains the
dense set /.

We conclude this section by formalizing what we mean
by a local gauge transformation (of the first kind) in our
framework., We generalize the familiar situation of a
naive theory {where a local gauge transformation is act-
ing on the state function at x via ¥(x) —~ expliw(x)[¢(x)} by
the following

Definition 2: Let G be a global (i.e., nongauged) group
which is unitarily implemented on the Hilbert space //.
Then any map w from the set of all open and bounded
space—time regions £ into the group G, given by

Q- w®) =G, (2.1)

will be called a local gauge transformation. [We note
here that we do not assume that w(§2) is the identity out-
side some bounded region. ]

From this definition, and from the fact that we have
in mind a generalization of the naive situation, it follows
that the action of a local gauge transformation w on #
will be described by some operator U, which has the
property that, for any state ¢), localized in £, we have

Uw’¢>Q:Uw(n)|d’>Q, 2.2)

where U q, is the unitary operator that corresponds (in
the assumed unitary representation of the global group
G on #/) to the particular group element g=w(Q).

3. THE MAIN THEOREM

We now ask: Are local gauge transformations kine-
matical symmetries, i.e., can U, be unitary on // for
all local gauge transformations (2.1)? The essentially
negative answer to this question is formalized by

Theovem 2: If the assumptions under which Theorem
1 is valid hold and if U, is unitary for all w, then w(8)
must not depend on §, i.e., the presumed representa-
tion U, of the local gauge group reduces to a represen-
tation of the global group G.
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Proof: Let the set of states localized in £ be

S={ld)gne ),
where I is some index set. By Theorem 1, §is dense.
By Eq. (2.2), we have
Uy | Unde =Usa) ‘¢n>n

for all w and every n. Since §is dense, we can extend
U, unitarily and uniquely to all of /. Now, if |¢) is an
arbitrary state in 4/, then, again because of the dense-
ness of §,

(3.1)

|99 =1im 25 [9)a, (3.2)
so that
Uy [$)=Um2I U, [$)e =Um23 Uy | dude

:me)limZ> |wk>Q:Uw(Q)‘¢>- (3.3)

Choosing now a different region & and repeating this
calculation, we get

Uy [#)=Usay [9). (3.4)

Since (3.3) and (3.4) are supposed to hold for all w, we
have

Upioy=Uu@ forallw, Q, Q. (3.5)

The only solution is: U, g, is independent of &, from
which the statement of the theorem follows directly.

4. DISCUSSION

The nonimplementability of the gauge group we de-
duced above hinges upon the denseness of the sets § of
Q-localized states. In other words, we found that uni-
tary implementability of a local gauge group (kind one)
and denseness of the set of Q-localized states ave in
conflict. If we wish to insist on implementability, the
denseness of § must be avoided. Admittedly, this is
not an easily acceptable step, since intuitively one ex-
pects that localized states are “complete” in some
sense, and it is hard to see how this could be achieved
if § is not dense. Nevertheless, we may wish to pursue
this possibility. Since the essential ingredient of Theo-
rem 1 is the Reeh—Schlieder theorem, we may enquire
about relaxing conditions that lead to it.® The major
(specific) assumptions of the Reeh—Schlieder theorem
are’

(a) the spectral conditions,
(b) “weak additivity”,?
(c) positive definite metric of 4,

One would not be willing® to give up assumption (a). The
abandonment of (b) would lead to the nonunitarity of
translations. Thus, it appears that the only relaxable
assumption is (c¢). In fact, in a recent paper Strocchi
and Wightman? demonstrate that in a full gauge theory
(with the vector gauge fields present) the use of an in-
definite metric is a necessity. Thus, once the gauge
fields have been introduced, the lack of a definite metric
can invalidate the Reeh—Schlieder theorem!® and hence
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may render our Theorem 1 inoperative so that Theorem
2 will not follow. Further, it is well known that the
necessary existence of gauge fields (though not their
equation of motion) follows from demanding gauge #n-
variance (via the necessity of introducing covariant deri-
vatives). On the other hand, it is hard to see how such
an argument would work outside the framework of a
Lagrangian formulation.

It appears that there may be a completely different
possibility of achieving unitary implementability of local
gauge transformations, without abandoning the dense-
ness of localized states. !! Indeed, our Definition 2 of
local gauge transformations, assuming as a prevequisile
the existence and unitary implementability of a global
group which it “turns into a local group, ” could be al-
tered/generalized. For example, one may think of re-
placing the (single) map w by a family of maps wg each
of which vanishes outside a compact region. Then our
conclusions would not necessarily hold.
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It is shown that the application of the locality principle in a uniformly curved space leads to the emergence
of a dynamical quantum mechanical group which is precisely the Hooke group. The interaction structure is

also studied.

1. INTRODUCTION

1t is well known that the central extension of the
Galilei group provides a complete, concise, and beauti-
ful algebraic description of nonrelativistic quantum
dynamics in flat space.' It is also common knowledge
that the Galilei group is the “speed-space’ contraction
of the Poincaré group, arising from it by substituting
Ny €Ny, P,— €P, and taking the limits®

limeN,, = Q, (1.1a)
€=0

13;51613,?:?. (1.1b)
The Poincaré group, in turn, is the “space—time” con-
traction of the de Sitter group, arising via the substitu-
tions J,, = €J,4, Joy— €Jy, and the subsequent taking of
the limits

1inO16Jk4:Pk, (1.2a)
=

lei_n(r)u:‘J04 =P,. (1.2b)
These considerations permit one to attach a geometrical
interpretation to Galilean quantum dynamics. The

de Sitter world is the simplest cosmological model,
possessing highest possible symmetry. Because of
(1.1), the flat Minkowski world, with Poincaré symme-
try, corresponds to an approximation of the de Sitter
world where only small spacelike and small timelike
intervals (compared to those of the cosmological model)
are considered, but speeds have not been restricted.
Because of (1.2), the Euclidean world, with Galilei
symmetry, corresponds to a further approximation,
where only small spacelike intervals (compared to the
timelike intervals) and small speeds (compared to the
unit ¢) are considered.?®

Less well known is the fact that, as discovered by
Bacry and Lévy-Leblond,® the cosmological de Sitter
group also allows for another important contraction,
namely, one of the “space-speed” type: Make the sub-
stitutions J,, — €J,4, Jyo— £/, and take the limits

HE{I})GJM:P, (1.3a)

liméeJ,, =Q. (1.3b)
€~ 0

Thus, we obtain a world which is an approximation of

the de Sitter world in which only small spacelike inter-
vals (compared to those of the de Sitter world) and
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small speeds (compared to the unit c), bul avbilravily
lavyge limelike inleyvvals are considered.

The generators P, Q, J=J,,, H=J,, form a Lie
group® which differs from that of the Galilei group only
inasmuch that the commutator of H and P is not zero
but is proportional to Q. Since (as in the Galilei group
but unlike as in the de Sitter and Poincaré groups) the
time translation generator does not occur on the rhs of
the space translation and boost commutator, time inter-
vals are not invariant under boosts, from which follows
that we have an “absolute time.”

This new group and its unitary representations have
been further studied in detail by Derome and by
Dubois®® who also gave it the now commonly accepted
name ‘“Hooke group.” The name derives from the fact
that the Casimir invariant corresponding to internal
energy [cf. Eq. (AbBb)| contains a harmonic potential.
The presence of this term can be interpreted as the
long-range effect of curvature, since we are considering
the universe on a large scale of time.”?

In summary, the Hooke group deserves serious inter-
est because it describes low-speed (nonrelativistic)
transformations of a universe af large, endowed with an
absolute time. Thus, it is (in contrast to the Galilei
and Poincaré group which are “local”) still a “cosmo-
logical” group. We may say that it summarizes the
dynamics of a nonrelativistic universe at large. We are
entitled to call this model a nonyelalivisiic cosmological
world.

It will not come as a surprise to note that the
Euclidean world (with the Galilei symmetry) is an
approximation of this nonrelativistic cosmological
world (with its Hooke symmetry): The Galilei group is
a “space—time’ contraction of the Hooke group, ' ob-
tained by substituting P —¢P, H— cH and performing the
limits

limeP = i’,

£+ 0

(1.4a)

Limed —4. (1.4b)

Some time ago, being inspired by the earlier work of
Jauch'! which pointed to remarkable connections between
Galilean symmetry and gauge symmetry, one of us'® '
showed that the entire Galilean structure of nonrelativ-
istic quantum dynamics (including the structure of inter-
actions and various superselection rules) in a flat
Euclidean world can be simply derived from the basic
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requirement of local phase (gauge) symmetry and a few
additional, rather obvious assumptions. Since, because
of the reasons outlined above (see also Appendix A),

we believe that the Hooke group can provide consider-
able insight into quantum dynamics of curved spaces,
we find it worthwhile to explore in the present work
whether it can be derived from the locality principle,
in analogy to the Galilei group, and study what special
features arise.

2. THE KINEMATICAL GROUP

Our ultimate aim is to build, from first principles,
guantum kinematics and then quantum dynamics in the
nonrelativistic approximation for a “cosmological, ”
curved space. For simplicity, and also because it has
the highest possible symmetry, we take this three-space
to have constant curvature. Accordingly, we adopt

Assumption 1: The space of events is the homogeneous
and isotropic three-dimensional space §, of constant
curvature,

This space can be imbedded in a four-dimensional flat
space where it becomes represented as a pseudo three-
sphere S with radius #,

(2.1)

In accord with current cosmological beliefs, we decided
to assume a positive curvature,® +* >0, i.e., to choose
for imbedding an E; , space with metric g, =-g,
=—gp=—g33=1, g,,=0 for u#v. The group of sym-
metries for §, (as defined in Assumption 1) is then
equivalent to “rotations” of S, hence isomorphic to
SO(3,1) with the Lie algebra

2 2,2
Xy =X"=7",

My Myl =g, Mo + 800 Myup = 2ue My = 2, M,
(u,v=1,2,3,4). (2.2)
It is convenient to introduce the notations
Jo 236 m My, M,==v"M, (k,I,m,=1,2,3). (2.3)
Then we have
M,T0,]=ir7e,J,, [T, 0= —i,0,,
[JisTpl =€, ). (2.4)

This algebra can be realized in the Hilbert space of
square integrable functions #(x) on S as follows'®:

M, ~ =i (r* +%%)7 2 [x (x,2; = x,9,) +772,), (2.5a)

(2.5b)

Next, we proceed to formulate the crucial locality
postulate, i.e., we demand that a local phase trans-
formation be an automorphism of the Hilbert space.
More precisely, we introduce!?

Sy~ = €1y X 10 e

Assumption 2: To every transformation
$(x) — expiw(x)] ¥(x) (2.6)

with a differentiable w(x) there corresponds in Hilbert
space a unitary operator // such that

(/)(x) = expliw(x)] p(x). 2.7

Using the realization (2.5a) and Eq. (2.1) we now
calculate'®

1665 J. Math. Phys., Vol. 17, No. 9, September 1976

U, U ) (x)
=expliw){- vt (2,2 s = %8,) +7°3, [t exp(-iw) Y(x)

:{Hk =7 X2 w0 — xX3,0 + 7780 (X),

i.e.,

M,— I, — v x (% %,0 ;0 = X ,x,0,0 +723,w). (2.8)
Similarly, with (2.5b) we get

o= S = €y X7 0 (2.9)

As in Ref. 12, we wish to insist that the local phase
transformation (2. 6) be a kinematical transformation
in the sense of Jauch,'' i.e., that, setting {/=exp(iF)
with F self-adjoint, the transformations (2.8) and (2.9)
be implementable as

I, — exp(iF)1, exp(~iF), (2.10)

J,~ exp(iF)J, exp( - iF), (2.11)

where F is constructed from the algebra of cbservables.
Formally, we postulate

Assumption 3: The algebra of observables is large
enough to guarantee that arbitrary local phase trans-
formations with a differentiable w(x) are kinematical
transformations.

Now, in order to combine (2.8) with (2,10), and (2.9)
with (2.11) so as to determine the [lf, F] and [J, F] com-
mutators, it is necessary that [F, [, F]j=[F, [J, F]]=0.
Furthermore, (2.6) and (2.7) imply Fy= w¢ (with w a
c-number). It is easily seen that these conditions imply
that F cannot be expressed as a function of l and J
alone. Hence, to satisfy Assumption 3, we must enlarge
our algebra. To see how, we note that (2.8), (2.10) and
(2.9), (2.11), respectively, imply in lowest order

i{F, )= =% 2,20 j0 — 2,%,0,0 +7%0,0],  (2.12)

i[F, )= = €4m%,0 pw. (2.13)

Equation (2.12) shows that, if w is not constant, [F,II,]
must contain at least a ¢-number term (to produce
7°9,w) and an operator whose realization in Hilbert
space is of the form x;x,. Therefore, F must contain

a trilinear form of an operator whose realization is x,.
We write

o 3
=a, +Z Z (a,'x,')n
n=1{=1
and in particular, selecting a specific i, we write
© 3
inZd kle (apx)"™,

{no summation over ) and denote the generator corre-
sponding to a phase transformation with (2. 15) by the
symbol F,;, From (2,.12) and (2. 15) we then obtain

[F,,]=iv"x;Ya,x ka nla,x;)"?

(2.14)

wix)=a,+a;x (2.15)

—xxakz; n(ax ot +via, 2 nla; (2.16)
n,J

xj)n-l},
with no summatlon over /. To gain insight, let us take
the flat space limit » - « and use the notation

LmIT, =1,. 2.17)
Then (2. 8) becomes [in view of (2.1)]

,— I, - 3,0, (2.18)
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so that [ﬁ‘,, ﬁk] must be a multiple of the identity opera-
tor. Specifically, (2.16) tells us that

[Fl)ﬁk]:iélk' (2.19)

In a similar manner one finds for the flat space limit
[Fiydo] =€ F. (2.20)

One might think that (2.19) and (2. 20) should also
hold for the operators prior to taking flat space limits,
i.e., that

[F,1;]=1i0,;, [F,d]=i€y, F,. (2.21)

But this is not possible. Comparing powers of x; in
(2.16) and (2.21) we see that

a,= X720, (2.22)

all other coefficients vanishing term by term in x,. On
the other hand, in first order

0=irx;'a, 2, 2(a;x,),
J

implying a, =0, which contradicts (2.22). Thus, for a
general multilinear series in x;, lower order terms
cannot be determined which would allow (2. 21) to hold.
In fact, it is not obvious that there exists some unique
F with unspecified commutation relations relative to
I, and J, which would yield the flat space limit (2. 19),
(2.20).

However, we do not really face a difficulty here.
Since we are concerned with local transformations
specified by w(x), it is entirely consistent to consider
local displacements only, i.e., displacements that are
small compared to ». Therefore, equivalently, the
appropriate generators can be taken to be the limits
ﬁk, cf. (2.17). From (2.4) it follows that, naturally,
they commute. Their change under an arbitrary local
phase transformation is given by (2.18), so that we take
over, without change, the statement and proof of
Theorem 1 of Ref. 12. Denoting, thus, from now on, ﬁk
by P, and introducing ,=MF,, we are led to the kine-
matical group K which is identical to that of flat space,

K=SUQ2) ®[TP& (TS xT¥)]. (2.23)
The Lie algebra is

(P, P,]=[Q, Q;]=0, (2.24a)

o Pil=1€m Pus  [Joy @1]1= 11 @nms (2.24b)

(Vs 1) = €4 1mT s (2.24¢)

[P,, @,]=-iM6,,. (2.24d)
The realizations are [cf. also (2.5)]

P, ~idy, (2.25a)

Q,~Mx,, (2. 25b)

Ty~ =060, + 5 e (2.25¢)

All remarks (and footnotes) of Ref. 12 on p. 1762 hold
also in the present case. In particular, the kinematical
group determines mass and spin.
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3. THE DYNAMICAL GROUP

In analogy to previous work™'!'* we introduce dynamics
by

Definition 1. A development transformation of an
isolated system is a kinematical symmetry (in the sense
of Jauch'!) characterized by

J—~J, P—-gQP,J), Q—-AQ,P,J. (3.1)

The motivation here is that the geometry of our space
requires that the generator(s) of intrinsic development
transformations be invariant under rotations (i.e.,
under J), but not necessarily invaviant undev avbilvary
lavge tvanslations (i.e., under P). The difference from
the flat world case lies in the behavior of P.

Using the same motivation as on p. 1762 of Ref. 12,
we next make

Assumption 4: Development transformations form a
one-parameter Lie group TV [so that they are repre-
sented by U, = exp(iTH)|.

As in Ref, 12, we demand

Assumption 5: H is contained in the algebra generated
by P, Q, J.

Assumptions 4 and 5 together with the invariance re-
quirement implied by Def. 1, determine the form of
the development operator,

H=-H(P?, Q, QP, TP, TQ, I).

Since, as in Ref. 12, the development transformations
give rise to an equivalence relation on the algebra of
observables generated by K, we again can define a
dynamical grvoup G by

(3.2)

Assumption 6: The kinematical group K is isomorphic
to the quotient group modulo 77 of some group G.

Thus, K=G/T%, i.e., H and the generators of K must
form a closed Lie algebra. This restricts the form of
H as given by (3.2) to be as follows:

H=AP?+BQ*+C(PQ+QP) +D,

where A, B, C, D are as yet arbitrary real constant
c-numbers, Using (3. 3) we then have the Lie algebra of
the dynamical group which consists of (2.24a)—(2.24d)
plus the relations

(3.3)

[H, P,|=i2M(BQ, +CP),), (3. 4a)
[H, @;]=-i2M(CQ, +AP), (3. 4b)
(H,J,]=0. (3. 4c)

In order to fix the constants in (3.3), we must make a
further assumption on development transformations. **
Physical intuition motivates

Assumption T: The transformation 7 corresponding

to inversion of dynamical development,
T:U.—~U_, (3.5)

is a kinematical symmetry of the system, i.e., an
automorphism of the algebra, realizable in the total
state space.
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Furthermore, it stands to reason that T be gauge
invariant, i.e., that it commutes with arbitrary local
phase transformations.? Formally, we postulate

Assumption 8: The operator T of development inver-
sion is invariant under local phase transformations,

expliw@)] T exp[-iw@)]=T. (3.8)

From its definition (3.5) and from Assumption 4 we
have

T exp(itH)T ' =exp(—iTH) (3.7
which tells us that®

TGH)T ' =(iH) = -iH. (3.8)
Transforming (3.4) with 7' and writing

TP,T'=P;, TQ,T'=Q) (3.9)
we get

[iHY, P}|=~2M(BQ; +CP}), (3.102)

[GH)", @;]=2M(CQ]+AP)). (3.10b)

Taking next in (3. 6) the specific case of a linear local
phase transformation, w(Q)=M"c,Q,, we see that

[Q., T|=0, i.e., @,=Q,. Then, with (3.8), Eqs, (3.10)
become

[H, P]]=~-2iM(BQ, +CP}), (3.11a)

[H, Q,]=2iM(CQ; +AP)). (3.11b)

Equation (3. 11b) is compatible with (3.4b) only if C=0
and Pj=~P,. Then (3,11a) is, without further assump-
tions, also compatible with (3.4a). Thus, we must take
€ =0 in (3.3), and since H is determined only up to an
over-all multiplicative constant, we set, for
convenience,
A=@EM)™,

B=CM)Y":, D=C,.

Here v is simply a constant determining a scale of units
whose significance will become evident later. Thus, the
final and unique form of H, as determined by our
assumptions, is

H=0M)"'P*+(2M)" W2 Q* +(,. (3.12)
The Lie brackets (3.4) become

[H’ Pi]:inQi’ (30 138.)

[Hs Qi]:_ipi’ (3\,13}3)

[H: Jilzo- (3.13C)

We now see that the algebra of the dynamical group G,
given by (2.24) and (3.13), is precisely the Lie algebra
{A4) of the cenivally extended Hooke gvoup which has
the structure®

G= B, =T'®K=TI2{{SU(2)’ @ T & (TF xT¥)}.
(3.14)

We derived it essentially from the locality principle in a
curved space.

If we write G=24,® T¥ and, fov convenience, decide
to represent /3, on the left coset space ,/S0(3)’ ® T2,
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we easily find with the composition law (A1), and upon
identifying the elements of the coset space (7, &) with
the points (¢, X) of the space E (/)X §,(x), the trans-
formation law of this space as given by Eq. (A3). Thus,
the active viewpoint of our abstract dynamical group is
to consider it a set of endomorphisms of E,(¢) X §,(x).
The importance of this is that it permits us to interpret
“nonvelativistic cosmologic time” in a purely group
theoretic manner. This time variable was not introduced
from the outset, but rather arose simply as a con-
venience, permitting an active characterization of the
dynamical group.

We also see from (A3) and the identification of (7, &)
with (¢, X) that the constant v introduced in the course of
fixing the constants in H has the dimension of reciprocal
nonrelativistic cosmological time, and (3.12) tells us
that it is the circular frequency of inertial motion in
this world.

We return to the discussion of development reversal
T'. Because of the identification of the coset space
B./50() © TS with E,(#) x §,(x), the operation T clearly
means cosmologic lime reversal. In the course of the
application of Assumptions 7 and 8 we found that

Q.,=TQ,T"'=q,, (3.15a)

P,=TP,T"=-P,. (3.15b)

Further, taking the T transform of (2.24d), we have
[P, @il==[P;, @;]=-T(iM)T"*, Consistency® with
(2.24d) demands that 7 be antilineav. Therefore, Eq.
(3.8) gives

H'=THT? =H. (3.15¢)

In summary, 7 has the same properties as the familiar
time reversal operator of the flat space theory.?*

We now discuss a further consequence of using the
above described homogeneous representation space. As
in the Galilean case,’? we are led to define, for each ¢,
a Hilbert space 4, of square integrable (on S) functions
by setting

#(X; 1) = exp(~itH)p(x), (3.16)
and the total Hilbert space is #/=®//,. On a particular
“glice” the realization of the basic observables is easily
seen to be

P,~~icos(vt)d, — Mvx, sin(vt), (3.17a)
@, ~Mx, cos(vt) - iv™ sin(vt)a,, (3.17b)
Ty~ =86,;6,0; + 5y, (3.17¢c)
H~id,. (3.17d)

In particular, A assumed a double role: on each slice,
apart from (3.17d), it also has the realization

H~={2M)15,0, +3(Mv3)x,x,} +C 4, (3.18)

which follows easily from inserting (3.17a) and (3.17b)
into (3.12). Since the , in (3.12) is precisely the
Casimir invariant given in (A5b), it can be taken (up to
ray equivalence) to be zero, so that (3.18) and (3. 17d)
give the familiar® Hooke —Schrédinger equation,

P. Roman and J. Haavisto 1667



i, (s £) = [(2M) 1 3,9, + 3 MV2x,x, J0(x; £). (3.19)

In our framework it emerged from the fact that we have
selected the “homogeneous Hooke group” SO(3)' & T2 as
the subgroup which defines a homogeneous G space.

4. INTERACTING PARTICLES

The transformation property of the basic observables
when a local phase transformation is performed® can
be found from (3.17) and we get

P~ P, —cos(v!)d,w, (4.1a)
Qo @, v sin(wh)d w, (4. 1b)
Ty oy = € X018 w0, (4.1¢)
H—H, (4.1d)

In particular we see that, except on the slice /=0, the
position operator is not invariant under local phase
transformations. Since, for physical reasons, we do not
find it acceptable that localization be dependent on the
gauge, we stipulate, as in Ref. 12,

Assumplion 9: Localization does not depend on the
choice of a phase w(X).

In order to satisfy the requirement that @ —Q under
arbitrary local phase transformations, we must modify
our system, by introducing essentially extraneous de-
grees of freedom, i.e., by coupling it to some system
in a suitable way. Systems for which

(a) Assumption 9 holds, i.e., for which Q— Q under
a local phase transformation,

(b) H is invariant under a local phase transformation,
i.e., H~H,

{(c) H is independent of ¢,
we shall call covariantly intevacting svstems. Such

systems are uniquely charvacterized by the following
theorem.

Theorvem: The Hamiltonian of a covariantly interacting

(spinless) system is given by
H= (MY P -AP +CM) Q2 +V, (4.2)

where A depends on X and £, V depends on X. Further,
A has the realization

A, ~A (%) cosvl, (4.3)
and under a local phase transformation
A, —~A,-d,w. (4.4)

V does not change under a local phase transformation.

Proof: To satisfy requirement (a) of a covariantly
interacting system, we must modify the realization of
Q. Since in the absence of interaction we must recover
(4.1b), and since on the slice { =0 we must recover

(2.25b), we are led to set
Q, ~Mx, cos(ul) —iv' sin(w)d, — v A, sin(vt).  (4.5)

Calculating the action of a local phase transformation
we find
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(UR 7 w)(x; 1) = expliw) [(Mx, cos(vl) - iv sin(vt) 3,]
xexp( = iw)¥x; () - v sin(w)l/A, (/- p(x; 1)
=[Mx, cos(vf) — iv=' sin(wt)a,
— v sin(vt)a,w- v sin(u)(/&, {/ ']

X {X; 1),

Thus, Q,— @, provided //A, (/" =4, - 2,w. In other
words, requirement (a) is satisfied if (4.4) holds. To
show that, if (4.3) holds, then H has the form (4.2) and
that then requirements (b) and (c) are also satisfied, we
first compute the commutation relations for the inter-
acting system. The realization of the operator H is,

by its basic meaning, given by (3.17d). The realization
of P and Q is given by (3.17a) and (4.5), respectively,
The realization of A is stipulated in (4. 3). Using these
expressions, we find*®

(@i Py—A;]=iMb, (4. 6a)

H, @,]=-iP,-A,), (4. 6b)

[H, P,-A,]l=iv'Q,. (4.6c)
Thus we see that

Pe=Py = A, (4.7)

is the momentum canonically conjugate to ,, and it
then follows that for any slice { we can write

H=QM)' P> +@M) "V Q +V (4.8)
which is precisely (4.2). Now we observe that under a
local phase transformation our @,— @, (as proved
above). Further, since the corresponding transforma-
tion of P is still given by (4.1a), whereas that of A is
defined by (4.4), we have P— P. It then follows from
(4.8) that H— H, i.e., requirement (b) is fuifilled.
Finally, substituting the realizations (3.17a) and (4.5)
into the rhs of (4. 8), we see that (provided V is indepen-
dent of /), H is explicitly time independent, so that
requirement {(c) is satisfied. This concludes the proof.

As in Ref. 12, we may decide to make explicit the
superselection rule which was implicitly introduced in
Sec. 3 by the choice of the homogeneous space that led
to a sequence H, of incoherent Hilbert spaces. Without
change, we can take over Assumption 8 of Ref. 12 con-
cerning time-dependent gauge transformations
{w=w(x, 7)). This again leads to the transformation
law H—H +2,w, and to achieve consistency with the
realization (4.2), we must again require that the here-

tofore arbitrary V transforms according to the law
V= V+3,0. (4.9)

As for flat space, now it is also possible to simplify
the description of the system by performing a particular
gauge transformation with

w(x, )=~ [!vat,

with the result that, while P and Q remain unchanged,
H— H -V, so that in this pariiculayr gauge

H=2M)™* P2 +@2M) Q%

and arbitrary gauge transformations are invariance
transformations.

(4.10)

Finally, we point out that all considerations of Ref.
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12 on p. 1765 concerning superselection rules, carry
over unchanged for the curved space theory.

5. CONCLUDING REMARKS

The major result of this study is that, exactly as in
a flat space, the locality principle, supplemented by a
few rather simple intuitive requirements, has the power
to determine a quantum dynamical group in a uniformly
curved space background. The major difference from
the flat space case is that, since dynamical development
need not be invariant under arbitrary large spatial
translations, P has a more general development trans-
formation. Furthermore, for obtaining a unique de-
velopment law, it is necessary to assume the existence
of an additional gauge invariant kinematical symmetry,
which later could be interpreted as cosmological time
reversal. The dynamical group so obtained is identical
with the (abstract) Hooke group, as expected. The addi-
tional requirement that localization be gauge indepen-
dent, leads to the necessity of an interaction and for a
unique interaction structure which has the familiar
minimal coupling form.

APPENDIX A: THE HOOKE GROUP

We review here that Hooke group /3, which, in the
framework of Bacry and Lévy-Leblond* arises from the
contraction of SO(3,2).?%’

Denoting the parameters corresponding to the genera-
tors H, P, Q, J by 7, a, v, R, respectively, the
composition law is

(r, a, v, R)7,a, ¥, R)=(7+7, acosvT + vl vsinuT +Ra,

v cosvT —va sinv™+RV, RR), (A1)

where v is an arbitrary dimensionate constant that may
be chosen as unit. 2

The inverse element is
(r,a, v, R)"'=(-71, v'R'vsinyT -~ R 'a cosvT,

-vR'asinvt —R'vcosyt, R™*). (A2)

It is possible to view the group A, as a transformation
group on a space—time manifold (x, £), where the
lransformalion law is

t— 1+, (A3)

From this it follows that the inertial motion of a parti-
cle initially at rest at Xx=0 is given by X= v *vsinut,
i.e., it is an oscillatory motion with (circular) period
v. From the viewpoint of a2 cosmological model, v may
be thought of as the “lifetime” of the universe (cf.

Ref. 6).

X— Rx +acosyt +vtysinve,

The Lie algebva of the centval extension® B: of A, is
found to be

[P, P,]=0. [Q, @,]=0, (Ada)
o T2l =i60,, 7, (Adb)
[ Pil=it; P,y o @,]=16,,@, (Adc)
[P, Q.)=~iMb,,, (A4d)
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[H, Jk]:o, (A4e)

[Ha Qk]: ~iP,, (A4f)

In (A4d) M is an arbitrary constant associated with the
central extension, giving rise to a superselection rule,
which, as in the Galilean case, can be interpreted as
mass.

[H, P,)=i1°Q,.

The Casimir invaviants of £, are

Co=MI, (A5a)

C.=H -P?/2M - (v*/2M)Q?, (ASb)

C,=T?, (A5c)
where

T=J-M'QXP=C (A54)

is the spin. Since representations with different C, are
ray-equivalent, (, can be chosen to be zero, so that

H=P%/2M + (1*/2M)Q?, (A5e)

i.e., there is an effective potential of harmonic force
type, in agreement with the previous statement on
inertial motion,

In the Introduction we emphasized the role of 3, as
a nonrelativistic cosmological symmetry group.*
However, we believe that 4, may play an important role
in particle physics, too. The idea that the internal
space—time manifold corresponding to an elementary
particle is a curved space (specifically, a de Sitter
s~pace) has been put forward many times. Therefore,
/3, describing an approximation of quantum dynamics
for such a world, may serve as a tool for understanding
elementary particles.* These possibilities will be ex-
plored at a later time,

APPENDIX B: REALIZATION OF EQ. (2.4) IN L%(S)

Rosen®? has shown that, in the limit of the vanishing
of the extra metric component, the Lie algebra of
ISO{p,q) is equivalent to that of SO(p +1, ¢) or
S0(p, q +1). The algebra of these homogeneous groups

iSSS

[NaB) va]:i(garNBE +gBaNa‘r—ga6NBv"gera 6):

a,ﬁ,y,@:O,l,...,n, (P“"q:n)- (B1)

Using indices u,v,p,0 for 0,1...,n -1, we can rewrite
this as

[Nu,,, Npo]:i(gu.pr +gquu,p =&u0 Nup -nguo)’ (Bza)

[Nuu, an]:i(gupan—gvaun)a (BZb)

(v

wny Nu,,]:iian, (BZc)

where the sign of a=g,, is — or + depending on whether
we take SO(p +1, ¢) or SO(p, ¢ +1), Clearly, the N,
obey the SO(p, q) algebra and the N,, are vectors for
this group, which in the limit ¢— O vanish. The parame-
ter lal'/? can be considered as the reciprocal of the
radius of curvature.3*

If y, denote the homogeneous coordinates of an # +1
dimensional linear space, then the Lie algebra (B1) can
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be realized by differential operators acting on the space
of square integrable functions f(y) as follows:

Nopmm ivgds=ved)e (B3)
Thus,

NuVNi(yuau—yuau), (Bsa)

Ny, ~=i(9,2, = 9,8,). (B3b)

To relate the homogeneous coordinates to the inhomo-
geneous coordinates for » dimensions, we use the equa-
tion of the pseudosphere, *®

n-1
Z’ guuyuyv:,rZ_yﬁ’ (B4)

U, D=0

from which it follows that

n=1

0p==3." 2, £, " (B5)

Introducing the notation

I,=+'N,, (B6)
using (B3b), (B5), and expressing v, by (B4), we obtain
O, ~-ir'(r* =2g,, 3V 2x[-v,5g,,v"9°

[’3
+3g,, V0, =70, ] (B7)

Equation (2,5a) is a special case; Eq. (2,5b) is obvious
from (B3a),

*Permanent address: Department of Physics, Boston Univer-
sity, Boston, Mass, 02215.

'For an authoritative review of the Galilei group see J. M.
Lévy-Leblond, in Group Theory and Its Applications, edited
by E.M. Loebl (Academic, New York, 1971), Vol. IL

2Qur notation for generators is as follows: de Sitter group:
Jyp @,b=0, 1, 2, 3, 4); Poincaré group: M, &, 1=1, 2, 3),
Ny =1, 2,3), P, @=0, 1, 2, 3); Galilei group: §, Q, P,
H; Hooke group: J, Q, P, H.

3These statements follow from the fact that the limits in (1.1)
and (1,2) imply that the corresponding parameters are small.
Thus, for example, (1.1a) says that the parameters asso-
ciatedAwith Q (i.e., velocities) and the parameters associated
with P (i.e., spatial translations distances) are made small
by the contraction process. This justifies the use of the
terms ‘““speed-space” {or “space—time”) contractions, cf.
Ref. 4.

“H, Bacry and J.-M. Lévy-Leblond, J. Math, Phys. 9, 1605
(1968).

SFor convenience, a review of the “Hooke group” is given in
Appendix A,

8J.R. Derome and §.G. Dubois, Nuovo Cimento B 9, 351
1972).

'J.G. Dubois, Nuovo Cimento B 15, 1 (1973).

8J.G. Dubois, Can, J, Phys. 51, 1757 (1973),

®No “time contraction” has been performed,
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0Just as the Poincaré group is a “space—time” contraction of
the de Sitter group.

113, M. Jauch, Helv. Phys. Acta 37, 284 (1964).

2p, Roman and J.P. Leveille, J. Math. Phys, 15, 1760
1974).

8P, Roman, in Quantum Theory and the Stvuctuves of Time
and Space, edited by L. Castell, M, Drieschner, and C.F,
von Weizsacker (Carl Hauser, Munich, 1975), pp. 85—102.

Y“Here and in the following x? denotes xf +x7 + 7.

PAssuming negative curvature would not essentially affect our
results: instead of the Hooke group corresponding to an os-
cillating and “closed” universe, we would get the Hooke
group for an expanding and ‘“open” universc,

16A straightforward derivation of Eq. (2.5) is given in
Appendix B.

"For details of this and subsequent arguments and their moti-
vation, cf. the analogous discussion in Refs, 12, 13.

!5gummation over repeated indices understood unless other-
wise stated.

9This is, interestingly, in contrast to the Galilean case where
no (essential) constant occurred in the determination of
H (cf. Eq. (8.2) of Ref. 12).

20This is motivated by the fact that, as it will transpire later,
T corresponds physically to time reversal, i.e., is a space-
time symmetry, whereas gauge transformations are “inter-
nal’” symmetries, giving rise to “charges”.

21We do not assume that 7T is a linear automorphism,

2There are other, isomorphic ways to write the structure.
We chose the one given in Ref. 6.

Z3Note that M is a real c-number,

241t is interesting to note that, because of Assumption 7, the
dynamics described by the resulting Hooke group is time re-
versal invariant. If the global implementability of 7 is
dropped (spontaneous symmetry breaking), the resulting
dynamical group will be more general, It seems worthwhile
to explore this possibility.

¥Simultaneously on all slices, i.e., &) — expliw & Ex;L.

28Commutato rs involving J are as for the noninteracting sys-
tem and are not relevant at present.

2'The other (not “oscillatory” but “expanding”) type ariscs
from contracting SO@,1). The formulas given below remain
valid for the latter if one replaces sin and cos by sinh and
cosh, and formally changes the sign of ¥ cverywhere,

28Letting v— 0 corresponds to contracting 84 to the Galilei
group 94.

2%For details of the central extension cf. Ref. 7. The Lie alge-
bra of 84 differs from that of /5, only inasmuch as the rhs of
(A4d) is zero.

H8ome interesting consequences of this viewpoint are ox-
pressed in Refs. 4, 6, and 7.

SIf one assumes that SO, 2) (rather thun SO(3,2)) corresponds
to the submicroscopic world, as has been suggested, for ex-
ample, by L, Castell, Nuovo Cimento A 49, 285 (1967); Nu-
clear Phys. B 4, 343 (1987) etc., then, by the contraction
procedure one arrives at a relativistic generalization /{,‘ of
the Hooke group [{Castell’s group II; see also P. L.
Huddleston, M. Lorente, and P, Roman, I'ound. of Phys. 5,
75 (1975)]. This may then give an even more interesting
handle for exploring particle physics.

"J, Rosen, Nuovo Cimento 35, 1234 (1966),

We use the metric U Al S - SO RV LR e S )

MThe curvature tensor of a uniformly curved Riemann space
,is Ry = O @y = 8uoflup) «

¥Note that Enp=Opa.

P. Roman and J. Haavisto 1670



Canonical parameters of the 3; coefficient*

Loren A. Lockwood

Departamento de Fisica, Universidad de Oriente, Cumand, Venezuela

(Received 5 April 1976)

The 3j coefficient is expressed as a function of five new parameters which have unique properties. They are
completely independent, satisfy simple validity criteria, and display the symmetry properties of the function
in a particularly transparent manner. By means of the new parameters, the known 72-element symmetry
group is reduced to an eight-element group, and the absolute symmetries are separated in a clear way from

those which contain a phase factor.

Wigner’s 3j coefficient! may be considered to be de-
fined by the equation?

(-71 J2 73 )z (3J) = 8(m, + 1y +my)(= 117923
Ny Wiy Mg

X[(4y +ia = G3)! (G + G5 =) Us +i1 =31/

X (ji +jg +js + 1112

X[y +mq) 1 Gy = m) Gy +mp) (o - my)!

X (G +m1g) 1 (Gs = mg) 1172

x 23 (= 1) (jy + 7y = d3 = )1 (jy = my = )}
¢
X (g +nig =)@ +j5 =y +my)!
Xl +j5 == mp)te! ], (1)

using the j and w quantum numbers of three angular
momenta as parameters. The summation index ¢ as-
sumes all values for which none of the factorials be-
comes undefined.

Regge® has shown that the 37 coefficient possesses a
72-element symmetry group. Only twelve elements,
those which involve permutations of the angular momen-
ta and space reflection, are simply represented in
terms of the j’s and m’s. The others require replacing
certain j’s and m’s by algebraic expressions involving
the original ones.

In obtaining his result, Regge introduced a square
symbol, expressing the 3j coefficient as a function of
nine parameters, bound by four equations. The sym-
metry operations are found to involve simultaneous
permutations among at least six of Regge’s parameters.

In the following, we shall express the 3j coefficient
as a function of five new parameters, which have prop-
erties not possessed by the quantum numbers of the
angular momenta nor by Regge’s parameters.

To begin, m, is replaced by —m, —m, and five inter-
mediate parameters are defined as follows: &y =j, + m,,
ky=ji=niy, ky=3j1+jy—J3, Ry=Jj1—Js+my, ks=Js—Js
— #1y. When substituted into Eq. (1), the parameters &y,
ky, and k, are found to occur in a symmetrical way. *
The same is true of 24, k5, and the constant zero, To
take advantage of this fact, the triplet (ky, &y, k3) is
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placed in ascending order and the ordered elements are
named (p,q¢,7); i.e., p <q <v. Similarly, the triplet
(ky4, k5,0) is ordered and named (f, g, k), with f<sg<h,®
Finally we definen=p-h, a=h-g, b=h-f,.c=q~-p,
d=v-p, and let the summation index ¢ in Eq. (1) be re-
placed by s =t — k. Then Eq. (1) becomes

(3J) = PRT, ()
where

P= (_ 1)h+k4-k5’

R=[n'n+a)le+b)!n+c)'n+d)!n+a+c)!
Xmt+a+d)+b+c)m+b+d)!/
Bn+a+b+c+d+1)1]12, (3)

and

T3 =1y

asle+a)ls+)-s)lu+c=-s)lm+d-s)!’

4)

There are six ways that (f,g, %) may correspond to
(R4, k5, 0), and in all six cases, the phase factor P may
be shown to be equal to

P = (- 1), (5)

We argue that the parameters »n, a, b, ¢, d may be
called canonical, on the basis of the following
properties.

Firstly, they are independent. The delta function in
Eq. (1) implies that there are only five independent
parameters there also, but the “independence” of the
j’s and #m2’s is only partial. The j’s must still satisfy
the triangular relationship, and the usual restrictions
obtain on the absolute value of each m and on the way
that integral and half-integral values may combine,
Regge’s parameters are likewise mutually restricted.
The value of any one of the new parameters, however,
in no way restricts the values of the others. All five
are required simply to be integral and nonnegative.
This condition completely satisfies all the restrictions
on the j’s and #2’s, as well as those relating to Regge’s
parameters,

Secondly, the symmetry properties of the 3j coeffi-
cient are especially transparent when it is expressed by
Egs. (2)—(5), as will now be shown.

Inasmuch as each of P, R, and T is invariant under
the interchange of @ and b or of ¢ and d, the following
four-element symmetry group is evident:
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(3J)m; a,b; ¢,d)=(3T)n; b,a; c,d)
=(8J)n; b,a; d,c)
=(3J)#; a,b; d, c). (6)

There are 36 ways that the two triplets (p,q,7) and
(f,&,h) can simultaneously correspond to (ky, ks, k;) and
(B4, %5,0), each being, effectively, a mapping from the
j’s and m’s onton, @, b, ¢, d. Of the 36, nine may be
chosen so that the remaining 27 are simply interchanges
of a and b or of ¢ and d, or both. Thus the four sym-
metries of Eq. (6) represent all 36 of the absolute sym-
metries of the 3j coefficient, a nine-to-one
homomorphism,

All the remaining 36 symmetries contain a phase
factor, which, in terms of the j’s, is equal to
(- 1)71*2*%3, In terms of the new parameters, these sym-
metries correspond to the simultaneous interchange of
a and ¢ and of b and d. It can be seen that this operation
leaves R unchanged, multiplies T by (- 1)" (by convert-
ing s into #-s), and multiplies P by (- 1)°*****%, Thus the
symmetries of Eq. (6) may be augmented by the
following:

(80 (m;c, d;a, b)=(3J)n;d, c;a,b)
=(33)n;d, c;b,a)
=(3J)(n;c,d;b,a)
= (= )™ 4(3 1) (u;a, b;c, d). (7)

This implies that any 3j coefficient with a=c and b=d
(or ¢ =d and b =c) and n odd must vanish. Since j; +7,
+j3=3n+a+b+c+d, this statement embodies all
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known symmetry arguments for the vanishing of the 3j
coefficient,

Equations (6) and (7) together define an eight-element
symmetry group which is equivalent to Regge’s 72-¢ele-
ment group through the previously noted nine-to-one
homomorphism. Interestingly, the symmetry operations
involve permutations among only four of the new param-
eters, and there is a clear separation of the absolute
and the phase-conditioned symmetries.

Work is in progress to determine whether the exis-
tence of these canonical parameters for the 3j coeffi-
cient may shed additional light on the symmetry proper-
ties of the 65 and 9j coefficients.

*Supported in part by Consejo de Investigacidn, Universidad
de Oriente.

\E. P. Wigner, Group Theory and Its Application to the Quan-~
tum Mechanics of Atomic Spectra (Academic, New York,
1959), p. 290.

"This equation, originally due to Racah, appears in various
forms in a large number of works, e.g., A. de-Shalit and
I. Talmi, Nuclear Shell Theory (Academic, New York,
1963), p. 138. From the physical viewpoint, it is not usually
taken to define the 3j coefficient, but, mathematically, it may
be so used.

’T. Regge, Nuovo Cimento 10, 544 (1958).

In fact, the full 72-element symmetry group may be ex-
pressed as the direct product of the six-element permutation
group of (¢y,k,, k;) with the 12-element group of physical
symmetries, i,e., permutations of the angular momenta and
space reflection.

SAll that is required, actually, is that p be the smallest of the
first triplet and that % be the largest of the second.
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Quantum two-particle scattering in fuzzy phase space*
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The concepts of configuration and momentum representation space for state vectors are generalized to that
of fuzzy-phase-space representation spaces L*(T,), 0< s< e, which are interpolated in between these two
standard representations. It is shown that the wavepacket in L*T,) displays the familiar evanescence
property from any region K; X M, in the fuzzy phase space T, if that region is bounded in its configuration
part K; also, that the probability of detecting the system in K, X M, has a finite asymptotic time limit if
K, is a (fuzzy) cone. For scattering states the existence of free states that are asymptotic in T is
established, and a formula for differential cross section in Iy is derived.

1. INTRODUCTION

It has been pointed out recently® that in quantum
mechanics one can assign probability densities to a
simultaneous measurement of position Q and momen-
tum P of a particle as long as one recognizes the fact
that no such measurement can pinpoint the determined
values q and p with arbitrary accuracy, since one is
limited by Heisenberg’s uncertainty relations. Thus,
the outcome of such a measurement cannot be described
exclusively in terms of the values (q,p) = R®; instead,
such a description has to be supplemented by assigning
to each (q,p) a confidence function x4, ,(X,k), to which
a straightforward operational meaning can be assigned
(cf. Appendix) in terms of the accuracy calibration of
the instrument used in the measurement of Q and P:
namely when xg ; is normalized to unity, the values

Vo, ol X 1) = [1 0% [; dK xq,5(%, k) (1.1)

express our confidence that when the reading (g,p) is
obtained the actual values of Q and P are within the in-
tervals I, and I,, respectively. In other words, each
such measurement supplies a fuzzy sample point that
represents the simultaneous values of Q and P. Conse-
quently, by generalizing' the mathematical framework
of probability theory to the case when the sample points
are fuzzy, we have managed to relate the description
of the statistics of such measurements (carried out on
a sample of systems in one and the same quantum
mechanical state) to the concept of probability measures
on fuzzy events in phase space.

As with the case of conventional probability theory,
in building a probability space over fuzzy events, the
starting point lies in the specification of the space §
of sample points. For the measurement of Q and P of
a guantum-mechanical particle we have taken! § to
consist of all fuzzy points (q,p, x‘”) specified in terms
of some (q,p)~ IR® and a confidence function x, , with
maximum at (q,p) and having the form

Xq, 5%, K) =fmg XX P dua’,p’,8); (1.2)
here p is any normalized measure on R®? and
3
X (X)=73211 s3expl-s2(x, - q.)?]
o=1
(1.3)

3
X;(S)(k) = TT-3/2 1§ SQQXIJ[" si(ka - pa)z]’

1

where 8=(s,, S,,5,) and 0 <s, < for a=1,2,3. By
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assigning to each (q,p) = R® a unique x,, , we obtain a
family I'® of fuzzy points. We refer to any such family
as a fuzzy phase space provided that (1.2) is continuous
as a function on R,

We note that in this terminology the ordinary phase
space I'’ can be looked upon as being the set of “fuzzy”
points

= {(q’ p, Xq,p) l (a,p)~ R®,
+Xq, (X, k) =8(x - @) (k - p)}

that have confidence measures v, ,, which are Dirac
measures centered at (q,p). Classical mechanics
allows the possibility of such points being the optimal
sample points obtainable by measuring Q and P, i.e.,
they are the outcome of measurements with perfectly
accurate instruments. Naturally, such instruments can
be viewed only as idealization of realistic instruments,
i.e., they represent an asymptotic limit of a sequence of
realistic instruments of ever-increasing precision.
Hence, in the classical context the family of fuzzy
sample points (q,P, x,,;) contains all calibration func-
tions of the form (1.2) with x{”(x)=6(x~y), x, (k)
=0(k - p) and du(Q, P, 8B =du’'(Q’, p')du,(8), where 14(s)
is the Dirac measure and p’ is arbitrary as longas a
precise meaning can be given to the resulting formal
integral in terms of convolutions of measures,

(1.4)

In complete analogy, the calibration functions (1.2)
for the guantum mechanical case are constructed from
those in (1. 3), since these last ones correspond to
optimal sample points obtainable by measuring simul-
taneously Q and P with optimally accurate instruments
{which cannot be, however, perfectly accurate as long
as their accuracy calibration takes into consideration
the usual “gedanken experiment” analysis leading to the
uncertainty principle).

In order to avoid cumhkersome notation, we shall
restrict ourselves in this paper to those optimal cali-
bration which are given by confidence functions of
the form

X (®) = (75?22 expl - s72(x ~ q)?],
x;s_l)(k) — (ns-z)-alz exp[— s2(k - p)z]

They stand out as the Galilean invariant calibrations
of optimally accurate instruments. The fuzzy phase
space associated with them is denoted by T',.

(1.52)
(1.5h)
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In Sec. 2 we introduce the representation of the
wavepacket in I, and show that such a representation
is in a physical sense a generalization of both configu-
ration and momentum representations. In Sec. 3 we
investigate the kinematics of a free wavepacket in this
representation, and prove that it has the same evanes-
cence feature as in the configuration representation.
This leads to considering in Sec. 4 its asymptotic be-
havior in fuzzy cones in ', and yields the strikingly
simple formula (4.19).

In Sec. 5 we establish the existence of asymptotic
free states in fuzzy phase space for short as well as
long-range interactions, and then use (4.19) to derive
the expression (5.20) for the differential cross section
of scattering into fuzzy solid angles, This formula
has exactly the same form as its counterpart for sharp
solid angles—a fact for which we give a plausible physi-
cal explanation at the end of that section.

2. THE FUZZY PHASE SPACE REPRESENTATION
OF A WAVEPACKET

Let us consider a system of two particles without spin.

After eliminating the center-of-mass motion, we can
describe its internal states in terms of a single particle
with reduced mass, For different choices of complete
sets of observables we get different representations of
these states—the pure states being the elements of the
spectral representation space® for the chosen complete
set. In particular, for the position cbservables Q and
momentum observables P, the conventional choice of
spectral representation space leads to L*(R%. Thus
we arrive at the configuration representation y(x) and
momentum representation J(k), respectively, of the
same wavepacket y (here (k) stands for the Fourier—
Plancherel transform Uy of (X}, since we adopt units
in which %i=1]. We then arrive at the standard inter-
pretation according to which {¢(q)!? and | (p)|2 are the
probability densities for having a perfectly accurate
measurement of Q and P, respectively, on the system
in the state ¢ yield the respective sharp values g= R?
and p= R3,

Let us denote now by I', the fuzzy phase space o
corresponding to the optimal calibrations (1. 5),

r,={@,x)x@,x& )@, p) e R, (2.1)

at a fixed finite value of s> 0. On the basis of previous
considerations' we propose interpreting

W] F@,p;9)9) =] w(a, p;5) |2

as the probability density for having a simultaneous
measurement of Q and P with an instrument of optimal
calibration (1.5) yield the result (q,p)= R®, where
(+1-), denotes the L2-inner product in the configuration
representation, and

(2.2)

9{a, P3s) = (213 | 4),, (2.3)

- x-qy . q
éf;(x):(‘nsz) 3/4exp [-— -—2—3—2—‘ +'Lp X - § . (2.4)
It is then natural {o refer to the space

LAT) = {4, p3s) = (2n) %/ %) |4 ¢ € LX)} (2.5)
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as the representation space over the fuzzy phase space
r

.
A simple computation® shows that

&y =expli(PQ - qP) oS =exp(trar - £a,)0l), (2.6)
where £,=271/%(s"'q - isp) and

a,=2""%(s"1Q +isP), ar=271/%(s"'Q~isP). 2.7)
Since [£Xa}, L a,)=—10,1%~ 18,12 -18,1% == £2L,, we
obtain

9, P, s) =exp(~ 3L¥E ) exp(£raddss | 4),. (2.8)

After expanding in a power series in {¥a, and inserting
the result in (2. 3), we get

¥(@,p;s) =expl~ {(s7?q* + s’ Vi(£,),
where f, is an entire function on €*

Ay M1 003
gsl§52£s2

o 7y Inglng!

(2.9a)

Aey=@nae 5

N eTlge Na=
On the other hand, the well-known identity for co-
herent states!:?

(oro | asiagzagsilo. (2.90)

T fo |62 dESb¢ | =1 (2.10)
implies that the inner product {-{-), in L¥T,) is
Wi l4ads=J o ¥7(@,0;5)45(a, B55) day dp. (2.11)

Thus L*(T,) is a closed proper subspace of L*(R®); it
consists of all = L*(R®) of form (2.9), where f, belongs
to the Fisher space* 7% over €3, Fisher spaces have
been studied in the context of quantum mechanics first
by Bargmann.® Bargmann’s results in Ref, 5 are for-
mulated for the case s=1, but can be extended routinely
to all s> 0 and can be easily shown to lead to the con-
clusion that f, varies over all of 7% as ¢ varies over
L*(R®), and that the inverse of the unitary
transformation

U0 :9(X) ~ (@, 038) = [ s 0 RNy () ax (2.12)
of L*(IR®) onto L¥T,)is
U y(q, p;s) ~ y(x)

= [ 6 93®)y(q, p;s) dg dp. (2.13)

Thus, the transition U"@U*% from LX(T,) to L*(T)
is affected by®

(U224}, p";8")
= [27{2(5"2 + 82)]-3/2(518)3/2
x [ exp{(s's)(s"® + s? 3 F{(@ +q + " ~ )]}
xy(a, Pys) dq dp.

An interesting feature of the fuzzy phase space rep-
resentation y(q,p; s) of the wavepacket is that for
YK =(CON Ly L2

lim(7572)3/ 4y(q, p;s) = exp(3ipQ)y(q),

S=+0

(2.14a)

lim (752)%/ %(q, p;s) = exp(~ 3pA)¢(p). (2.14b)

S+

This fact is not accidental since a sharp measure-

ment of Q yielding the value q could be considered as
being a measurement of Q, P that yields (q,p) with

Eduard Prugovecki 1674



the confidence v ({x})=1 for X being q and the confidence
function x,(k)=1 for k being p (i.e., totally undecided

in favor of any particular value p for P). Thus the
sample space R? corresponding to perfectly accurate
measurements of Q can be replaced by the “fuzzy”
phase space

I‘0 = {(q! Xq) X (p, Xp) \Xq(x) = 6(x - q))
xK)=1, q,p< R,

In complete analogy, perfectly sharp measurements of
P yield results in

T =1, x) X0, xp) [ x®) =1,
Xy(k) :5(1{ —p)’ qrp(: ]RB}’

In view of (2.14) and {2.15), we can introduce the sug-
gestive notation

(2.15a)

(2.15b)

LH(T) = {y(q, p;0) = exp(3ipa)y(q) [ ¢ = L*(R)}, (2.16a)
L3(T.) = {u(q, p;) = exp(- 3ipq)y(p) |¢ = LA(R%)}, (2.16b)
and observe that
lu(@) |2 =]9(q,p;0)|*
=1in;(ﬂ8‘2)3’2|¢(q,p;s) |2, (2.17a)
[3@) [2=](a, p;) 2
=lim (7s (2.17b)

The last two relations, supplemented by the evident
observation that for 0 <s<w

|¢(a, p;s) |2 =1im | y(q, p;s’) |2,

§l-s

(2.18)

are a direct reflection of the continuity property (cf.
Ref. 1, Sec. 3) of the spectral measure on fuzzy events
in the phase space I'®, We note that in this context the
appearance of the factors (rs72)%/2 and (7s%)3/2 in
(2.17a) and (2. 17b), respectively, are necessitated by
the appearance of the corresponding factors in (1.5b)
and (1.5a), respectively. Indeed, those factors have

to be compensated for in order to have

lim (‘nsz)s/zxés)(x) =1, (2.19a)
S= 4%
lim(rs™)3/ 2 (k) = 1. (2.19b)
S=+0

These considerations show that the configuration and
momentum representations of a given wavepacket can
be looked upon as limiting cases of the fuzzy phase
space representations. Nevertheless, there is one
key difference between the two limiting cases s=0
and s=<«, and the remaining in-between cases
0 < s <»: While the complete knowledge of either the
configuration probability distribution |3(q)|? or the
momentum distribution |3(p)|? does not pinpoint the
corresponding wavepacket ¢ uniquely, its I',-probability
distribution 1y(q,p;s)|? does. This fact is an immediate
consequence of the global analyticity of f,(¢;s) in (2. 6).
In fact, ly,(q,p;s)1%=14y,(q,p;s)|? implies Ife, (£ )1
=|fy,(t,)], which for entire functions is true if and only
if fo,(£,) = ¢fe,(L,) for all £ e €2 and some constant ¢ of
absolute value one. (Indeed, the set Z in @3 on which
Js; vanishes has no accumulation points, since that
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would imply fy, =0. Thus €3\Z is connected. Now, by
the maximum modulus theorem of complex analysis,
|fog/for =1 at all ¢ e C\Z implies fo,/fo, = c(V) in any
open neighborhood A/ of ¢, where fwz/ fe, is analytic.
The connectedness of €3\ Z implies that c¢(V) is the
same for all { e CNZ, i.e., f,,=cfy, lcl=1, atall
such ¢,. Since Z has empty interior, this result is
valid globally.)

In view of the present theory of fuzzy phase space this
feature is not at all surprising since fuzzy simultaneous
measurements of Q and P obviously supply more in-
formation than the corresponding fuzzy measurements
of Q or of P exclusively., On the other hand the fuzzy
localization operators for Q as well as for P supply
exactly the same amount of information as their sharp
counterparts (cf. Ref. 7, Theorem 2).

The above results can be generalized to arbitrary
fuzzy phase spaces related to (Q, P) measurements
with nonoptimal calibrations of the form (1.2). It is
interesting to note that the general Galilean-invariant
phase space (TS, 1) is related to I';, 0 <s <, in the
same manner fuzzy configuration space’ (R?, ) is
related to ordinary configuration space IR?: Both re-
quire a “smearing” of the optimal confidence functions
with the respective Galilean-invariant measures u and
v. However, only in case of (I'*, u) these optimal calibra-
tion functions are the Gaussians (1.5), while for (IR?, v)
they are the 6 functions 5, g R®.

3. THE EVOLUTION OF THE FREE WAVEPACKET
IN L2 (Ty)

Any bounded operator A in L3(T,) can be expressed
as an integral operator in L*(T):

(A9)(@,p;5) = [ s A, D0, P';8)0(a, P;s) dy dp.

In fact, (3.1) is a direct consequence of (2.10) re-
written in the form

@a)® [l o&h) dadp(pls)| =1t

and holds even for an unbounded A provided that

SyeDaND 4 for all ¢ e @2

(A9)(4,p;s)
= (@028 [Agdy = (27m) 2/ 2A*0 8 [y,
=(@m72 [ (A ] 6 & o0 | 9o da dp’
=(@n)7 [ (oilAdi b, s)daap.

By comparing with (3.1) we see that
A(Q, P30, P"38) = 21D} | AL, ), (3.4)

In order to study the behavior of a free wavepacket
g, =Ui¥% in LA(T,), let us compute

(3.1)

(3.2)

(3.3)

U@, 0;0", 0';8) = (21) (o) [ exp(= iHyt)p (S, (3.5)
for the free Hamiltonian H,:
(Hopp) (k) = (k2/2m)j (k). (3.6)
After computing the Fourier transform of ¢{:},
B4k = (17524 exp{~ (s2/2)(k - p)? = ifk p/2)a},
(3.7
we immediately get
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U°Mg, p;a’, p’;s)
=(r"s)® exp{- (s3/2)(p* +p'?) - (¢/2(pq - p'q’)}

xX1(q,p;q',0';s), (3.8)
where®
1q,p50’,0"58) = (4m)"*/2 |, exp(-K?/4p, +vk) dk
=6;/2 exp(B,y?), (3.9)
48, =[s?+ (@/2m)t]?, y=s*(p+p') +i(@a-q’). (3.10)

It is instructive to see what happens to (3. 8) in the
limit s — +0. From (2.14a) we see that we have to
multiply U;°’(q,p;q’,p’;s) by a corresponding factor
before taking this limit. We get
lim(rs™2)*/2 exp((i/2)(pq - p'q")]

$=+0
X U(q, p;a’,0’;8) = (m/ 2mit)*/?
xexpl (im/ 20)(@ - q')%],

which is the standard formula for the kernel

U{®(q,q’; 0) of U{” in the configuration representation.
On the other hand, pointwise in p, the limit s — +
does not lead to a function. This is not surprising since
from (2.4) and (3.5) we see that, in the sense of
distributions,

lim(ns%)*/2 expl(i/ 2)(p'q’ - pA) U (q, B;0',0";)

§m o

= | U |p’), = expl- i(p?/2m)t]5(p - p’).

In configuration space, any wavepacket that is inte-
grable in g R?, ¢(q) = LZ(R®) N L*(R?), displays in
time the well-known behavior |3,(q)1~0(1¢1-3/2). The
fact L2N L! is dense in L%, combined with the unitarity
of U{”, implies then the evanescence of all free wave-
packets from any bounded region B of configuration
space.

(3.11)

(3.12)

A similar result holds in I'y. In fact, by combining
(3.8)—(3.10) we get

@, p59) |
< ('"-153“3: | 3/2 exp(- szpz/z)fms dp’ exp(- SZpIZ/z)
x [ s ddexpl|8, | (s*[p+p' [ +|a-qa' )%

x|3@’,p’;s)]. (3.18)
Now for any ¢ < L*(T,) and all q,p e R3,
9@, 038) | < @a) 2 2llgil, (3.14)
and therefore (cf. Ref. 5, pp. 193, 197)
l4*(@,p;9)|
< (27)3/2[lyll, expl-x(s72q? + s%p%)/4), Osk <1,
(3.15)
$™* (g, p;s)
=exp{- «(s72q® + s?p?)/4}((1 - k) %q, (1 - k)*/?p;s).
(3.16)
In view of the large-time behavior of 3,,
B, = (m/2it)[1 +0(|t|™M)], (8.17)

and the inequality
(s*|p+p’|+|a-a’ | <2[s?(p? +p®) +q2 +q"2], (3.18)
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we conclude that when |¢| is sufficiently large (so that,
for instance, 1618,1<min{ks™2, 2(x +1)}) the integral in
(3.13) can be majorized by a constant. Consequently,
for such values of {

|48 (@, p;s) | < const | £|-3/2

xexp[- s?(1 - 4|8, [p?) +2]8,[q%/2]. (3.19)
We have (Ref. 5, p. 197, Sec. 1g):
lim|ly - ¢*|l;=0. (3.20)

K=+0

Consequently, if K and M are Borel sets in R® and K
is bounded and of Lebesgue measure |K|, then

U, aa/ aole @ p;s) |72
<llg =9 @l +1 J, da/, dolufo@,ps) 172

<lly = g ®@l+ | K| Cyl [¢]73 | exp(- s?p?/2) aplt/2.
" (3.21)
This establishes the evanescence of § from B XK.

Concerning the I', representation of U{®’, it is inter-
esting to note that by expanding y* in (3.9) in terms of
its constituent vectors and inserting the result in (3.8)
we get

U:O) — Ug)*Ugl)ng),

(U4)(@, p;8) =83/2 | expl28,(s°p +iq)
x(s?p’ —q’ Jy(q, p;s) da dp,

(U29)(@, p;8) = (17's)*/* expl - s%p*/ 2 +ipq
+B,(s% - i9)Jy(q, p;s)-

This decomposition generalizes a similar one® in con-
figuration space {cf. Ref. 2, p. 414) that has proved
very useful in scattering theory.? It should be noted,
however, that U{*’ and U{* do not leave L¥T) invar-
iant, and should be regarded as operators on L?(IR®).

(3.22)

4. ASYMPTOTIC PROBABILITIES FOR FUZZY CONES
INT,

Consider now a fuzzy Borel set!

E XM ={(a, x) %, x5 |ae K,pe M}

in 'y, that corresponds to some Borel sets K, MC R®,
We have already seen that the probability

Py (K xMp)= [, da [ dply,(@,pis)f

of measuring simultaneous fuzzy values (q, x*’) and
P, x;s'l)) that belongs to K XM, vanishes in the limit
t—+ if K is bounded in R*, Consequently, let K be
a cone with apex at the origin, so that for all 7>0

(4.1)

(4.2)

TK:{TQ‘QEK}ZKV (4.3)

We shall prove that in this case Pwt in (4. 2) has for
t— + o a limiting value which in general is greater
than zero.

Using (3.7), we get
(27)*/2 y,(q, p;s)
= (@& (U©) = (n71s7)2/4
><fIRS expligk - i(k%/2m)t — s2(p - k)?/2

+iqp/ 2 7 (k) dk. (4.4)
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Hence, for any fixed p= R*® we have
¢,(a,p;8) = (21)"%/ exp(igqp/2)
X fmg exp(igk)(U{"g,) (k) ik,
2,00 = (477 ) Texpl- s2(p - K)?/2}i(K).

Clearly, g, is square-integrable in k~IR®. Thus we
can apply the configuration representation (3.11) for
U{® to the inverse Fourier transform g,(q) of g (k):

$(q,ps8) =

(4.5)

(m/2wil)*! 2 expliqp/2)

x J_sexpllim/20(-q')lg,@") da’. (4.6)
By inserting the expression for gp(q’) into (4.6) and
then expanding the square (g -q’)?, we get
(UL, p;5) = (W@ ¢)a, p;s), (4.7a)
(@)@, p;s) =exp{- ilap - (m/)a’)/2}4(a, pss)
(4, b)
(Wi2p)a, pys)
= (m/i)¥ 2 explilap + (m/ P/ 2} (ma/ 8, p;s), (4.7¢)

where {[A denotes the Fourier transform of y with respect
to q:

Ua’,p;s) = (2n) w812 J s exp(-ia'DY(q, pys) dg.

We note that neither <I>t‘s’ nor Wi leave L*(T",)
invariant. However, ¢{*’ is evidently a unitary operator
on L*(R®), and so is W, as proven by the change of
variable m{"'q=q’ in the following integral:

(4.8)

j o L (W2 0)(q, p;8) |2 dg dp

= J o 13@,p;s) |2 da’ ap. (4.9)
Thus we have

I, = WS Sll=I1(2{ = 2 EMyll, (4.10)
where in accordance with (4. Tb)

(£79)(a, p;s) = exp(- iqp/2)$(q, P;s)- (4.11)

On the other hand,

927y = ¢ 2¢ll3

= o1 = expl(im/2062] |2 |9, p;5) | 2da dp (4.12)

converges to zero by Lebesgue’s dominated convergence
theorem.? Thus we can state that

s-lim(U® — W) =0

t=t©

(4.13)
Since the probabilities P, are expectation values of
bounded operators?® in L(T,),

P,(B))=(p| EX® (B, B,C T, (4.14)
we conclude from (4.13) that

lim [Py, (K XM 1) — Py(K X M) =
tez
b= WP ey, (4.15)

Making again the transition from the variable q to
Q' =m¢'q and taking into consideration (4. 3), we obtain,
for t+0,

Poy(KxMe)= [ dqa' [ dp|(@9)(q’, pss
where — K={~qld< K} corresponds to the case (<0,

(4.16)
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We note that (4, 16) is actually time-independent.
Futhermore, using (4.4) at /=0, we obtain

(9)(q, p;s) = (4ns?)*/*
x] sexpligk - s*(p - k)2/2]7(k) dk,
which inserted in (4. 8) leads to the conclusion that
(@9’ pis)

(T 157)3/4

(4.17)

")exp|—s3(q’ - p)*/2]. (4.18)

Hence the contribution of the integration over M is the
same for all ¢~ L¥T):
Py (K XM 1) =1im Po (K XM 1)
tet
Jdali@]? f, doexpl-s*p-a)]. (4.19)
When M =R2, the above formula describes the
asymptotic probabilities for finding the particle in the

fuzzy cone K, as {—+ =, regardless of the values of
its momentum:

Pk R = [T

::(ﬂ-lsz)s/z

|2 dq. (4.20)

We note the remarkable fact that this probability
coincides with that of finding it in the sharp cone K.

If we take K =IR® and afterwards go to the limit
s— +, we recover the standard formula

Pe, (RS XMo) = [ [3(0)|* ap

of detecting the particle in the sharp region M, of
momentum space,

(4.21)

Consider now the case when M., is a fuzzy cone with
apex at the origin, and KN M =#. We note that in gen-
eral (4.19) does not vanish although the particle is
fuzzy-localized in K,, and K does not intersect M. This
is, however, to be expected since the imperfectly
accurate instrument used in determining some
(@, x{¥) = K, can give (fuzzy) readings of momenta whose
direction vectors do not lie within + K. On the other
hand, if K and M are very narrow cones around the
unit vectors q, and p,, respectively, we see that for
the /= +x case (4.19) assumes its maximum when
Po =9, and its minimum when p, = - q,; naturally, the
converse is true for f=- o,

5. ASYMPTOTIC STATES AND THE DIFFERENTIAL
CROSS SECTION IN [

Consider now the case when the particles interact
and the internal energy operator is the Hamiltonian
H=H,+ V. If the interacting term V is nonlocal or of
short-range and local, then the wave operators £,
can be defined by the strong limits?

@, =s-limU*U®,

tgx

U, =exp(-iHi). (5.1)
Consequently, every interacting state represented in
Schrodinger picture by U,y, will have asymptotic

states ¢, () = Ui?y. and ¢, (f) = UPy, that are asymp-
totic in I', i,e., which satisfy
PUt(o)wi(Bs)]z

lim [Py ,(By) - (5.2)

t=too

0, Po= di),

for any fuzzy Borel set B, I',, Indeed, according to

(4.15),
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|PUtu’(Bs) - Pugo)w(Bs”
= [ (U | EXBBYU ), = (U4, | EXP(BYU ), |
< [(U4 | EST (BT - UL

H(Ug = UL, | EXP(BYUDG,, | (5.3)
and the expressions on the right-hand side of the above
inequality vanish in the limit / — x 0 since [{U,|j=IU||

=1, 1EXP(B)i<wo, and 1U,j - UPQ,pll— 0 by (4.1).

We shall show now that if we deal withlong-range
potentials,

VE) =c|X |0+ V(X), 620, V&) =0(]x["*%), (5.4)

the statement (5.2) stays true at least as long as 6 < 3.

We recall first that for the long-range potentials in
(5. 4) the strong limit (5.1) does not exist, while the
corresponding weak limit is zero.® The wave operators
are instead defined®*® by

Q,=s-limU*U® exp(- iG®), (5.5)

t o

where G{* is a self-adjoint function of H, and therefore
also of P; for {> 0 it can be chosen as follows®!%:

S + mc‘P "M In(2n71P?), 65=0,

GEPI=) e pl-u-o/zp g <p< ) (5.6)
Consequently, by replacing in (5.3) U{® by

U‘“’ U0 expl- iG{®), (5.7
we immediately obtain

yﬂtPU o(Bg) - Pﬁ;‘”ut(Bs)]:O- (5.8)
Thus, in order to establish (4.2) it remains to prove

that
bﬁfmw(BS) - Put(mw(Bs) - J'B{l (ﬁgo)w(q, p;s) iz
- [(Uy)(a, pis) |*}da dp

vanishes in the limit / — + «,

(5.9)

By duplicating the argument leading to (4.7) with
U® replaced, however, by U{® we arrive at the con-
clusion that

7(0) v(s)q,m
(Wiwll“)(cb p;s) = On/it)*/? exp{ilqp + Wi/l)qz]/Z}«
Xiren(’nq/ls p,S;l),
leenl@'s 3530) =expl- GO @K@, B3)-

(5.10a)

(5.10b)
(5.10c¢)

We easily compute {cf. Ref. 10, p. 105):

- 2
exp (zmqu ‘) 1 !

(5.11)

e - vfés@;wni:(zmﬂf dq’ dp
IR

| e

From the proof of Lemma 1 in Ref, 10 it follows that
e dalexp(ima®/20) - 1]2]¢,e,(@, 3s30) |2
=00 _sdalv@,p;) 2, (5.12)

where b({)—~ 0 as {—~ +=. By using the estimate (5.12)
in (5.11), we immediately arrive at the result
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s-lim[(}}") - li’;s’cl);s‘] =0.

XS

(5.13)

Since according to (5.10b) and (5. 10c¢)
Py, (B )_w///\3 ' ¢§f’¢) (ma/t,p;)2 dq dp, (5.14)

we infer from (5.8) that

[(@£24)@', p;5) 1 da’ ap] =

(5015)

lim | £ (B J-J

Py Btm™1)

where B(7)=1{(rq,p)l (q,p)~ B}. On the other hand, we
can deduce from (5.7) in exactly the same manner that

im | P o —
t_.*,xl bt v "{B(tm

4, {20 pi9) | da” dpf=0.  (5.16)
In view of (5. 8), the relations (5.15) and (5. 16) estab-
lish our original contention about (5.2) being true also
in the long-range case.

With (5. 2) established for nonlocal and local short-
range as well as long-range potentials (under con-
straints like & > 5, which are of a purely technical na-
ture and can be probably eliminated by a more de-
tailed analysis) we can make the claim that, for all
such two-body interactions,

aq |, @|?
XJM dp exp|- s%(p - )?]

when K is a cone in R® with apex at the origin; we get
this result from (5.2) by replacing in (4,19) ¢ with ¢,.

lim Py, U(A XM 1) = (7 -lSZ)B/ZLK

t e

(5.17)

Let us therefore introduce® the 7 matrix
T(p;w,y, w;,) On the energy shell p? =p? , =p? and
use the polar coordinates p,, = (p, w;,) and P . = (p, W, )-
Since ¢, =5y and 5=1 - 277, we can write for any
nonforward direction w_, #w,, (i.e., any direction that
contains no points from the support of 5_),

:1:1-(/)’ wuut)

:_27.”'“/’ T(p;wout’ 1n) (p’ )dwin’ (5‘18)

where the integration in w,, is over the unit sphere in

R>.
If K is a cone with apex at the origin that cuts out

on this unit sphere the solid angle @, i.e.,
K=1{(q,w)lw~ 0}, then according to (5.17)

Lim Py (K, XIR31)
b
:jﬂ( out\} H* C], out)\2(12(1q~
Consider the asymptotic probability density of ob-
serving the system in the fuzzy direction specified by
the fuzzy ray

(5.19)

P =1, x ) [a= (g, Woyy), 0= g <o} (5.20)

in R?, It is obviously obtained when dividing the right-
hand side of (5. 20) by the area | Q| of 2 and going to
the limit Q— {w,,}:

dr =,

({—Q(“' 7’éﬁ:)—4ﬂ2ﬂ p dp

X

f T{P3W,uts win);-(l)! Wi,) dwln'u‘ (6.21)

Let us now employ the standard derivation (cf. Ref.
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2, pp. 407—13 or Ref. 11, pp. 46—51) relating differ-
ential cross sections to the 7 matrix. We then arrive
at the expression

do { p? > (2m)*

—la—,w

T (B o) =
as being the differential cross section for having a
beam, coming in along - w,,, scatter from a target
(placed at the origin and extending in a plane orthogonal
to w,,) in the direction 73} specified in (5.20)—regard-
less of the direction of the momentum of the scattered
particles,

lTp’ out’_win)lz (5-22)

We see that (5.22) reads the same as when perfectly
precise measurement of w,, are performed. Naturally,
this fact is a consequence of having obtained for the
asymptotic probability (5.19) of scattering within a
fuzzy cone K, the same formula as for scattering in the
corresponding sharp cone K.

From an intuitive physical point of view this result
is not that surprising if we recall the evanescence of
the wavepacket from any bounded region: To observe
the particle in the direction (5.20) after an infinite
time interval [0,«) has elapsed, we have to place the
detector at infinity along the direction w, ,; consequent-
1y, the particle is going to “see” an aperture whose
fuzziness has diminished to zero and had become
“sharp” because of the infinite distance at which the
apparatus had been placed.

A confirmation of the correctness of this reasoning
can be obtained by considering the asymptotic behavior
of the probability

Pyoy(K) = [ da [ x| (UL ®)]* ax

of detecting a partlcle in the fuzzy cone K, of the fuzzy
configuration space” R3={q, x{*)|ac R%. In view of the
fact that®8

o (5] om ()3 () o

and that, after using Tonelli’s and Fubini’s theorems?
to interchange in (5.23) the orders of integration, we
have [, x{(X)dg=1, we can deduce that

lim (Pugo)w(Ks)_}tmlaf dax lp(me) ’2f dqx‘('s)(x)> =0,
4o m? K

(5.25)
Hence, by making the transition to the variables
X' =mit'x and Q' = m™ltq we easily compute that

(5.23)

lim
t~xw

Lim Py(o),(K,)

tegw

)]
Lol ()

q,)z] I'J;(xl)IZMI

(5.26)

Thus we see that, indeed, we obtain an expression that
is identical to that for the asymptotic probability of
scattering within a sharp cone K.
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6. CONCLUSION

The main conclusion we have arrived at is that two-
body scattering theory in phase space based on inter-
preting (2. 2) as the probablhty den51ty for observing
the fuzzy value (q, x{*) X(p, x,s Y e T, leads to exactly
the same observational consequences as scattering
theory based on perfectly sharp measurements. This
is somewhat surprising since, as we have argued in
Sec. 2, fuzzy measurements in I'; certainly supply more
information than both fuzzy or sharp measurements in
either configuration space or in momentum space.
Thus somehow this additional information gets lost if
we wait an infinitely long time.

To understand the mathematical reasons for this
phenomenon, we have to look at the relations (4.7):
The operators W*’ when applied to ¢(q,p;s) destroy

“the analyticity of its f.(t,) factor. Yet, it is essentially

the contribution of W{*’ that survives when {— z,

But as (W{®y)(q,p;s) is not in L*(I',), its values cannot
be uniquely (up to a multiplicative constant) recon-
structed from those of |(W{*'¢)(q,p;s)]|2.

On the other hand, (U{®’y)(q,p;s) belongs to L%(T,)
and therefore it can be uniquely specified in terms of
[cf. (2.9D)] the function f;,(£,), which is entire in
£, = €3 hence it can be reconstructed from the knowl-
edge of | (U{®y)(q,p,s)!? on ', Moreover, observe
that due to analyticity, fw,(;s) can be reconstructed if
we know it on any characteristic set € of values’ of
¢se €3, We note that the images €, in I'; of such char-
acteristic sets can be significantly “smaller” than I',
itself: countable sets

{qm XQS))X pm (s ) ,::1

for which {qn,pn , have an accumulation point, or

sets like (g, x{) x]Ri-l specified by a fixed g < R®. Con-
trast, however, this last case with the asymptotic one
when we measure for each outgoing direction w_,, the
probability density in the momentum at all points in
R3.1, and yet by (4.17) we still cannot determine y,
beyond the values of 13,(q) 12!

Physically, this paradox can be understood in the
light of the remarks made at the end of the last section:
as opposed to momentum (which is conserved) the taking
of the limit ¢ — +« in the formulas (4.19), (5.17), or
(5.19) reflects a physical situation in which the position
detector has to be placed at infinity in order to detect
the particle in the limit  — +, Otherwise, due to
evanescence, the particle would be actually detected
before an infinite period of time had elapsed, and
therefore these formulas would not be applicable in a
literal sense.

Looked upon in this light, the fact that in actual
scattering experiments the scattered particle is de-
tected in some finite time interval after the interaction
had taken place is consistent with the above remarks
only because some of the information extractable from
such experiments is completely ignored: Usually the
momentum-determination aspect (cf. Appendix) of
such measurements is taken into account, while the
information on position that is intrinsically gained by
such experimental procedures is simply not considered.
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The loss of information inherent in the conventional
treatment of differential cross-section measurements
is reflected in the well-known fact that such treatment,
which, as seen from (5.20), yields only the absolute
value of the T matrix, cannot be used to pinpoint the
T operator itself in all cases. Yet, the experimental
procedures themselves, when interpreted as simulta-
neous fuzzy measurements of Q and P (as outlined in
the Appendix) can be used, at least in principle, to
determine T to an arbitrary degree of accuracy. Indeed,
if at the instant ¢, we prepare (in the Schrodinger pic-
ture) a state U;,¢ and, after the collision has taken
place, we carry out at time £, a I'; measurement that
yields |(U,9)(q,p;s)|?, we have complete knowledge
of the incoming and outgoing asymptotic states U{®'y,,
v=y,. As a matter of fact, |(U,y(q,p;s)!? determines
(U,¥)q, p;s) itself. Moreover, by (3.14)

[(U,)(@, ;8) - (U,4)@, b;8) |

<HUP = Ul =NOF U = 24,11, (6.1)

and we see that when (5.1) is valid (Uj¢,)(q, p;s) can
be chosen to be arbitrarily close to (U,y)(q,p;s) uni-
formly on all of I'_ by choosing ~ £, and ¢, respectively,
sufficiently large; naturally, the same statement,

with U{”y, replacing U{®y,, remains true in case of
long-range interactions for which (5. 5) holds,

The probability of actually determining for any .
the vector y, = Sy_ by I', measurements confirms that
such measurements do indirectly determine S. How-
ever, the absolute value |S(q,p;q’,p’, s! of the T,
representation (3.1) of S can be also directly inferred
from such measurements since

l9,(@, P;8)12=15(q, P;Qo, Po3 ) 12 (6.2)

if the incoming asymptotic state is so prepared that at
t=0 it is represented by the coherent state d)é;.’no(x)q

According to the argument leading to (2. 9), at any
fixed point q,,p,< R®, we have

(&),

where S, , is analytic in ¢ = €°. Hence the knowledge
of (6.2) 6n any set of values (g, p)~ R® which is open
in R® (and for which, therefore, the corresponding set
of values { e @3 is open in €?) determines (6.3) up to
an unessential constant ¢ of absolute value one.

$(d, P;Ao, Po;s) = expl- 5(s72q* + s2p®)]S, (6.3)

Qe By

Thus, our final conclusion is that the differential
cross-section approach to fuzzy phase-space measure-
ments leads to results which are in complete agreement
with those based on (sharp or fuzzy) position or momen-
tum measurements, but does not supply any additional
data for pinpointing the scattering operator S; yet, the
very same experimental procedures, when treated as
fuzzy phase-space measurements performed at large
but finite times before and after scattering, do supply,
in principle, all the information necessary for the
complete determination of S.
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APPENDIX: THE OPERATIONAL MEANING OF
FUZZY POINTS IN PHASE SPACE

It has been recognized from the earliest days in the
inception of modern quantum mechanics that while
in the process of measurement on macrosystems,
whose behavior is described by classical mechanics,
the influence of the instrument on the system can be
ignored in the majority of cases {(and taken care of by
a straightforward reduction of data procedure in the
remaining cases) this would be an incorrect approach
when a measurement on microsystems is performed.
Carried to its ultimate logical conclusion this observa-
tion leads to a distinction between preparatory mea-
surement and deferminative measurement, 121314
Roughly speaking, when the values ¢ of the physical
quantities X are prepaved at the instant ¢ that means
the system at that instant “kas” the values ¢ for X;
on the other hand, when we claim the values £’ are
deteymined at t we mean that the system “would have
had” the values £ for X if there had been no disturbance
caused by its interaction with the measuring instru-
ment. In the first approximation'® this translates into
the operational request that when a preparatory mea-
surement of X at / yields £, an immediately following
determinative measurement of X at ¢ +¢ should repro-
duce £ (cf. Reproducibility Principle, Ref. 13, pp.
10, 13).

In order to deal fully with quantum measurement,
the preceding operational interpretation has to be
refined by introducing “fuzzy values” (¢, x,) as de-
scriptions of the outcome of measurements. In cases
of the simultaneous measurement of Q and P such an
analysis leads to the following interpretation'* of the
statement that “the fuzzy value (g, xg) X(p, x3) of (Q, P)
has been measured”: If the measurement is preparatory,
then an immediately following determinative measure-
ment of Q should yield the value x with the probability
density x,(X), while a following determinative measure-
ment of P should yield (assuming in either case that the
particle had not interacted in the meantime with any-
thing else other than the apparatus) the value k with
the probability density x;(k). Conversely, if the mea-
surement is determinative and immediately prior to
it a perfectly accurate preparatory measurement of
Q had been performed, the probability density that the
Q-measurement had prepared X is x,(X); similarly, the
probability density that a prior measurement of P had
prepared the value k is given by x,(K). We note that this
interpretation de facto specifies an operational proce-
dure for calibrating an instrument ¢(Q, P) used in the
simultaneous measurement of @ and P provided we
already have perfectly precise |or, practically speak-
ing, “very” precise compared to ¢ (Q, P)] instruments
J(Q) and ¢ (P) for measuring Q and P separately.

It is quite easy to present the main features for the
blueprint of an instrument ¢(Q, P) used in the simulta-
neous measurement of Q and P of a charged particle,
Actually, all the main ingredients of such an instru-
ment are already present in many standard apparatuses
for measuring P, the only features still lacking in such
cases being the accuracy calibration for both Q and P.
Namely, these ingredients are a generator of a homo-
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geneous magnetic field H, and the facilities for mea-
suring three consecutive fuzzy values (X,,x,),

(X5, xp) and (X¢, xc) of the position of a particle travel-
ling in the region where this field H is contained. Such
a set-up can be used then for both preparatory and
determinative measurements of (Q, P), but the ob-
tained data are used in different manners in the two
cases: For preparatory measurement we take g =X,
Xq=Xc, and p=p., while for determinative measure-
ment we take q=x,, x,=x,, and p=p,. Here |p,|
=|pol=elHIR, where e is the charge of the particle
and R is the radius of the circle passing through x,,
Xg, and X, with the vectors p, and p. being tangential
to this circle at the points X, and X., respectively,
and pointing in the direction of motion; furthermore,
the position measurements A, B, and C should be
treated as preparatory in the first case and as deter-
minative in the second case.

The confidence function x, can be obtained by an accu-
racy calibration based, as described earlier, on very
accurate measurements of P prior (when p=p,) or
after (when p=p,) the measurement yielding p. How-
ever, x, can be also inferred from the accuracy cali-
bration of the instruments used in determining x,,

Xy, and X. (provided H is perfectly homogeneous). We
have

xp(K) = fD(k) Xa(X)xp(¥)xc(2) dx dy dz,

where D(k) is the set of all points (X,¥, 2) € R® which
lie on any circle of radius |kle!|HI™! and for which
k=rFr,, where r, is the unit tangential vector to the
circle at x.

In conclusion, we emphasize that in the determinative
measurement of (Q, P), X,, X, and X, are the deter-
mined position vectors, i.e., they describe the points
A, B, and C where the particle would have been if the
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disturbances caused by these three measurements were
negligible. Thus, if, for example, A, B, C were ob-
tained? in each case by observing through a microscope
the direction in which a photon of given momentum had
bounced off the particle, the momentum of the photon
after the collision has to be measured in order to
reduce the obtained data by discounting the change the
photon had caused in the momentum of the particle. The
natural by-products of such a consideration are the
confidence functions x,, xp, and x.: In the case when
photons are playing the role of microdetectors
Xa,-++>Xc result from the standard type of arguments?*?
used in analysing gedanken experiments in the context
of the uncertainty relations,
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Various properties of one-dimensional Schrodinger operators with “soft spring” potentials are derived as a
consequence of the fact that the GHS and other correlation inequalities are reversed for certain general

Ising modules.

We consider the Hamiltonian, H, =~ d%/dx® + V(x),
of a one-dimensional quantum mechanical particle
under the influence of a “spring” force, —dV/dx. In
classical mechanics, a distinction is sometimes drawn
between the qualitatively different motions due to “hard
springs,” where d2V/dx? is increasing in lx|, and
“soft springs,” where d?V/dx? is decreasing in lx| (see
Ref, 1, Chap. II), The introduction of statistical
mechanical techniques into constructive quantum field
theory in recent years (see Ref. 2) has led to some in-
teresting “spin-off” results concerning quantum
mechanical hard springs, and the main purpose of this
paper is to give the corresponding results for soft
springs.

Our soft spring potentials will be real-valued func-
tions in the class

Vs={v|V&)=const+ [*G(y)dy with G(y)=-G(~y) vy,

G concave on [0, <), and a,=1imG(y)> 0}, (1)
gm0

We further define
exp(- /) ={f|f=exp(- V) for some Ve |/ }.  (2)

For —a, <a<ay, H,-ax [considered as an operator on
L%(R, dx)] has nondegenerate eigenvalues which we list
in increasing order as Ej(a) <E;(@)<--- and a nor-
malized ground state Q° [(H, — ax)Q° = E;(@)Q°] which we
choose to be positive,.

Theovem 1: Suppose Ve |[/,. Then

M(a) = (Q°,x9° is convex on [0, ay), (3)
E,(a) - Ey(a) is nonincreasing on [0,ay), : (4)
E{(0) - Ey{0) = Eo(0) - E4(0), (5)
U< exp(~ [/;)= exp(~ tH ) Uc exp(- |/;), for t=0, (6)
Q< exp(- /). ()

Remark 2: In the case of hard spring potentials, the
analogues of (3) and (4) were first derived in Ref. 3 and
the analog of (5) in Ref. 4 for V a quartic polynomial.
These three results were then extended to a larger
class of V’s in Refs. 5 and.6, and finally to all hard
spring potentials in Refs, 7 and 8. The analogues of (6)
and (7) for hard springs are given in Ref. 8. We do
not include a proof of Theorem 1 since (3)—(7) follows
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from the “reverse” correlation inequalities {in particu-
lar (14) and (15)] given below for certain general Ising
models in exactly the same way as the hard spring re-
sults follow from the usual GHS and Lebowitz in-
equalities (see Ref. 9, Chap. IX, and Ref. 8 for
details).

Remark 3: Property (6) for Hy, can be expressed in
terms of the diffusion process determined by H,, ex-
actly as was done for the analogous hard spring result
in Ref. 8. Property (5) and its hard spring analog sug-
gest some general relation between convexity prop-
erties of V and those of the spectrum of H,. In particu-
lar, we suggest the existence of a natural class of V’s
for which E,,;(0)- E;(0) is nonincreasing (resp., non-
decreasing) in 7.

A general Ising model (with pair interactions) is a
collection of “spin” random variables, {X;:i=1,...,N},
with joint probability distribution,

N N N
z! exp(‘Ei Ryt ‘§1J,,x,x,> ‘Ellpi(dxi), (8)
where each p; is a measure in £, the set of even Borel
measures p on R such that [ exp(kx?)p(dx) < for some
2> 0, where Z is chosen so that (8) is a probability
measure, and where the J;;’s are real and so small that
Z is finite for all real k,’s. We shall always assume
that J;;, h;= 0 for all 4,j.

In order to discuss our correlation inequalities, we
consider four independent copies, {X?} (a=1,...,4),
of the {X,} and define T, = (X} +X%)/V2, @,= X}-X%)/
V2, Wi=T1dagX}, and Y7 =75 BapgX], where A and B
are the following 4 X4 matrices:

{1 11
1{-1 1 -11
A‘2—1-1 11}’
L1 -1-11
m1 1 1 1
11 -1 1-1 9
B=9l1 1 -1-1{
-1 1 1 -1

Given a finite measure p on R and an invertible 4 x4
matrix T, we define p (dx) as [T4,; p(dx*) and p(dx) as
pd[T-x]), where x=(!,...,x%) c R'. We define ¢,
(resp., g_) as the set of measures p in £ such that for
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u=p4 (resp., pg)
1 4

Jre 6 6 n@x = 0,

vi,. .., 1*=0,1,2,-.-. (10)
We also define ¢, (resp., G as the set of finite even
measures p such that p, = py (resp., pg=p,) on R
={x:x* >0, va}. (Note that in Ref. 8, (, is denoted by

. ) We denote a multi-index (my,...,my) by m,
19, X by X™, an expectation E(H) by (H), and
<X‘1 v 'X{k> by iy« ip).
Theovem 4: A measure p in £ belongs to g,, if it be-
longs to ¢ ;. If each p; in (8) belongs to G+ then for any

multi-indices !, ..., m* m,n, and any i,,...,1,,
4 o
<£1 (weyn >> 0, (11)
(QmQ™) —(Q@™XQ") = 0, (12)
(TrQ"™) —(T"{Q") = 0, (13)
(E4iaty) = (4 )Siais) = (ig)(d1l3)
= (i3)d48y) + 2(i1 (i )(43) = 0, (14)

(Bydyisty) = (i4gg )(igiy) — (i) (daiy) — (igiq)(iats) = O, (15)
when
h;=0, ¥7.

Remark 5: These results are the “reverse” of the
usual correlation inequalities which were originally
proved when each p;(dx)=56(x - 1)+ 6(x +1) in Refs. 10,
11, and 12 and then extended to measures in (;. in Refs,
5—17. In the case of (;_, the direction of the inequalities
(13)—(15) is changed to give the usual GHS and
Lebowitz inequalities, W*® in (11) is replaced by Y* to
give the usual Ellis—Monroe inequality, and (12) re-
mains the same,

Proof: The proof is essentially identical to that of the
usual inequalities as given in Refs, 6 and 7. We only
note that in deriving (12)— (13) from (11), use must be
made of the fact that the sign of any two of the bottom
three rows of A may be changed without altering the
validity of (11).

The next theorem completely characterizes mea-
sures in (;; and is analogous to the characterization of
G given in Ref. 8.

1683 J. Math. Phys., Vol. 17, No. 9, September 1976

Theorem 6: For a finite, even, not identically zero,
Borel measure p on R, the following three statements
are equivalent:

(i) Either p(dx)=Cb(x) for some C> 0, or else p(dx)
=f(x)dx for some f< exp(- /),

(ii) pEGs,
(iii) For any b>0

3 3
(1%) In f exp(hx - bx*)p(dx)= 0 for h=0.  (16)

Proof: The proof of Theorem 2.4 of Ref. 8 directly
yields that (i) =s(ii) and (ii) = (iii), and it reduces the
proof of (iii)=s(i) to showing that if p, = p weakly with
ppldx) =f,(x)dx and f, € exp(~ |/,), then p must be as in
(i). This latter fact is easily derived by using the
proofs of Lemmas 4. 6 and 4. 10 of Ref. 8.
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Binary mixture with nearest and next nearest neighbor
interaction on a one-dimensional lattice
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A mixture of two kinds of molecules on a one-dimensional lattice with free ends is considered. The energy
term is assumed to consist of interactions of nearest neighbors and next nearest neighbors and interaction
with the uniform external field. The partition function is evaluated by determining the degeneracies.

I. INTRODUCTION

The study of one dimensional systems is perhaps
mainly motivated by the mathematical tractability, !
However, one justification is that such study may cast
some light on the more realistic two- or three-dimen-
sional systems, In a lattice model, the lattice sites are
enumerable. Hence two- or three-dimensional lattice
models can always be mapped onto and represented by
one-dimensional lattice models, In the process of
mapping, the originally nearest neighbors in the two-
or three-dimensional lattice may appear as distant
neighbors in the corresponding one~dimensional lattice.
This suggests that if farther and farther neighbor inter-
actions are included in the one-dimensional lattice
models, the results may not only cast light on but also
ultimately become the exact results of the higher-
dimensional models, As a first step we shall investigate
one-dimensional lattice model with nearest and next
nearest neighbor interactions.

In a previous paper? we have proposed a method
applicable to multicomponent as well as binary systems
to determine degeneracies associated with nearest
neighbor interactions on a one-dimensional lattice. In
the following, we shall generalize the method to include
next nearest neighbor interactions while confining our-
selves to binary system for simplicity.

Il. PRELIMINARY ANALYSIS

The energy associated with the molecules interacting
with nearest neighbors and next nearest neighbors on a
one-dimensional lattice in a uniform external field can
be written as

E:; U{n‘+%2 (1+5”)U“n”+‘é‘2 (1+5”)u“m“,
iy i i,

(2.1)

where ¢,j=1,2,...,k indicate different kinds of
molecules and runs through these values independently
in the summations, »; is the number of ith kind of
molecules, n;; and m,; are respectively the nearest and
next nearest neighbor pairs between ¢th and jth kinds,
and vy, vy, uy,; are the associated interaction energies.

The partition function corresponding to a definite set
of {n;} is given by

znh= o

(n“)(m”

where M({n,}, {n,;},{m,,}) is the multiplicity or degen-
eracy corresponding to the distributions specified by

}M({"i}, {”u}: {m“}) exp(- BE), (2.2)
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the sets {n;}, {n;;}, and {m;,;}. ¥ we wish to consider
the restriction due to the finite size of the molecules,
we shall incorporate the following condition

2 lmy=1L, (2.3)
13

where L is the total number of lattice sites and /; is the
number of sites each Zth kind of molecule would occupy.
Summing over the set {n,} in accordance with (2. 3), we

obtain

Z(L)=MZ) Z{n:}). (2.4)
Once the partition functions are known the thermo-

dynamic quantities of interest can be calculated. It is

clear that the knowledge of the degeneracy M is essen-

tial to the evaluation of the partition functions. Thus

the main task is the determination of the degeneracy

M. For simplicity, we shall limit ourselves to the case

of binary mixture so that ¢,j take the values of 1 and 2

only. In such case, a state with fixed »; and »n, can be

defined by

|6) = |11, 1z, mag, Mgy, Mg, Mgy {2.5)

corresponding to a definite energy E and associated
multiplicity M. When vy =09y == Vg, %yq =Ugy =— Uy3,
the model considered here reduces to the well known
Ising model, *

As a preliminary step, we shall place all the
molecules of the first kind in a row, thus creating
(ry — 1) numbers of nearest neighbor pairs and (r, — 2)
numbers of next nearest neighbor pairs. This initial
state can be written as

| ) = |y —1,0,0,n,~2,0,0) (2.6)
with E=vn +vany +vy(ey — 1) +uyq(ng - 2) and M =1,

Our problem is now reduced to the proper choice

among the ends and intervals to place properly the
second kind of molecules in accordance with the speci-
fied set of {;;} and {m,,;}. By ends and intervals, we
mean the following: Ends are the space left to the left-
most molecule of the first kind or the space right to the
rightmost molecule of the first kind. The first left
(right) interval is the space between the leftmost
(rightmost) molecule of the first kind and the next
molecule of the first kind. Interior intervals are the
spaces between the nearest neighbor pairs of the first
kind of molecules. First intervals and interior intervals
are to be called simply intervals when no distinction is
needed. To keep track of the changes of states brought
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oo e WA= FIG. 1. Representatives of the
arrangements corresponding to
A, BCPDPE*P with ny =12, n, =10,
The dots represent the first kind
of molecules while the bars rep-
resent the second kind of

molecules.

S AN R

about by the process to be described in the next sec-
tion, we now introduce the following:

Ay: one end is exactly singly occupied by the second
kind of molecule and has the following operational effect

Alla’b)crd’e;f>:la)b+lyc,d’e+1;f>- (2-7)
Ay: one end is at least doubly occupied and
operationally
Ayla,byc,d,e fy=|a,b+1,c+1,d,e+2,f). (2. 8)

B: one first interval is at least singly occupied and
the end next to it is not occupied. Operationally,

Bla,b,c,d,e,fy=|a-1,b+2,c,d,e+1,f). (2.9)

C: one of the interior intervals or one of the first
intervals with occupied end next to it is at least singly
occupied. Operationally,

Cla,b,c,d,e,fy=|a-1,b+2,c,d-1,e+2,f) (2.10)

D: one interval, be it first interval or interior in-
terval, exclusive of the ends, is at least doubly oc-
cupied. Operationally,

Dla,b,c,d,e,f)=|a,b,c+1,d-1,e+2,f).  (2.11)

When any given end or interval contains more than two
molecules of the second kind, we say there are extras.
Then

E: one extra, operationally,

Ela,b,c,d,e,fy=|a,b,c+1,d,e,f+1). (2.12)

P: one pair of occupied nearest neighbor intervals
inclusive of the pair formed from the end and the first
interval next to it. Operationally,

Pla,b,c,d,e,f)=la,b,c,d+1,e-2,f+1).  (2.13)

In describing a given situation, we apply all the opera-
tors that are compatible, Thus, for instance, in a
given situation if we find that the left end has one
molecule of the second kind and an interior interval has
five molecules of the second kind, we would then say
the following: One end is exactly singly occupied, one
interior interval is said to be at least singly occupied,
and also at least doubly occupied, and also has three
extras, Hence, we write A;CDE3, Now suppose we move
all the five molecules belonging to this interior in-
terval to the first left interval, we create one pair of
occupied nearest intervals. Since the left end is occu-
pied, we continue to identify the first left interval as

C and would now rewrite as A;CDE?P, Next, if we move
all the five molecules to the first right interval, the
pair will be destroyed and the first right interval has

to be identified as B as the right end is not occupied.
Hence we rewrite as A;BDE®, Now if all the five
molecules are moved into the right end, we say the
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following: One end is exactly singly occupied; one end
is at least doubly occupied with three extras. Hence we
rewrite as A;4,E%, Lastly, if all the five molecules are
moved into the left end, we would say that one end is at
least doubly occupied with four extras. Hence we re-
write as A,E%. The meaning of the operators shall
become clearer by examining the following example
and the accompanying illustrative figure.

Example: When we write A,BC?D?E®P, it means that
we may find in the arrangement the following: One end
is at least doubly occupied; the first interval near the
other end is at least singly occupied; three interior in-
tervals are at least singly occupied; two intervals are at
least doubly occupied; plus two extras and one pair of
nearest neighbor intervals. The total number of
molecules of the second kind is 10, i.e., #,=10,

To be more concrete, we shall take n; =12, Then,
two of the possible representations of the above de-
scription are shown in Fig, 1.

Operationally, we have
A,BC*D*E'P|11,0,0,10,0,0) = |7,9,5,6,11,3).
(2.14)

It is easy to verify that the two representatives shown
in Fig. 1 have the same number of pairs as defined in
(2.14)

1. DETERMINATION OF THE DEGENERACY

The determination of the degeneracy will be done by
the following procedures and we shall assume, without
loss of generality, that ny > n,.

(A) All the n; molecules of the first kind are placed
in a row so that an initial state is created:

|09 = |n41, a9, mag, 114, M43, M99)
=|n;-1,0,0,n,~2,0,0). 3.1)

(B) The second kind of molecules are placed into the
ends or the first intervals so as to result in the follow-
ing boundary conditions:

1): {0,0;0,0}, (2):{0,1;0,0},{0,0;1,0},
(3):{0,1;10}, (4):{1,0;0,0}1{0,0;0,1},
®):{1,0;1,04{0,150,1}, (6): {1,0;0,1}, (3.2)
(m:{2,0;0,0},{0,0;0,2}, (8):{2,0;1,0},{0,1;0,2},
(9): 2, 0; 0,1}, {1, 0;0,2}, (10):{2,0;0,2},
where {a, B; v, 5} has the following meaning: The left
end is occupied by @ numbers of molecules of the sec-
ond kind, the first left interval is occupied by 8 number
of molecules of the second kind, the first right interval
is occupied by y number of molecules of the second

kind, and the right end is occupied by 8 number of
molecules of the second kind.

The above boundary conditions can be represented by
the following operators:

(1):1, (2):2B, (3): B, (4): 24, (5): 24B,
(6): A}, (7): 24,, (8): 24,B, (9): 24,4, (10): A3,
(3.3)
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where the factor 2 is the double degeneracy correspond-
ing to the right left symmetry.

(C) x internal intervals be selected to place ¥ number
of molecules of the second kind so that y number of
pairs of occupied nearest neighbor intervals is created.
This can be represented by the operator

C P, (3.4)
To determine the degeneracy resulting from this
process, one may regard the ends and intervals as lat-
tice sites and the unoccupied sites as the first kind of
molecules while the occupied sites as the second kind
of molecules. Then the following can be obtained”* with
M/} denoting the number of ways (multiplicity) to change
the state defined by the previous step (B) into the state
defined by the present step (C) in accordance with the
ith boundary condition.

=072 wan=()(027),
@ =" ) (72, @ (f) (7209,
oo (3 0575), w02
(2 w5

(3.5)
By definition, x and y are positive integers. Here and
in the following the convention

C;):O whenever P <0, € <0, or P<@ (3.6)

is adopted.

(D) z intervals be selected from among the by now
singly occupied intervals, excluding the ends, to place
z molecules of the second kind so that each of these
z intervals will be doubly occupied. The corresponding
operator is

DA, (3.7

The degeneracies resulted from this process can be
easily found to be

g =(), @ =77, w0 (13,
@ =0, @on=("17), @ = (),
o mg=(3), @ = ("] Y, e a=(3),
a0: mpy= (7).

(E) Place whatever the number of molecules of the
second kind still unused into the by-now exactly doubly
occupied ends and intervals in a manner of Bose—
Einstein distribution so that those exactly doubly oc-
cupied ends and intervals will become at least doubly
occupied.

(3.8)
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e
o o= () 257), o= () (41 257).

It is clear that the number of unused molecules of
the second kind depends on the boundary conditions.
Hence the associated operators and the degeneracies
will also depend on the boundary conditions and are
given by

E(nz-x-z) " __ ( 9 =X — 1>
(: Mi z-1 )’

(2): Emerw=e-)s ppm — < i1 )

-3
:E(nz-x-z-Z) :<n2 x
@ *
(4). E(nz-x-z-i) m_ (nZ X = 2)
’ z-1
(5). E(nz—x-z-Z) M”’ (”2 x = 3)
) z-1
(3.9)
. (n -x-y-Z) " _.. Hy—X — 3>
(6): E'™ M < z-1
(7): E(nz-x-z-il) lwm <n2 x - 2)
Z
s e, g (7).

9): E("Z'x"'3); My =

. @ {np=x=g=4), m__ nz-x—3

(10): E™ ,M1o—< 241 )

When the values of x, y, and z together with one of the
ten boundary conditions are specified, a state is defined.
The degeneracy corresponding to such a state is ob-
tained by combining (3. 5), (3.8), and (3.9) and is given

by
My =y (M MIWM"), (3.10)
where ¢ denotes the ith boundary condition and
y;=1, i=1,3,6,10,
(3.11)

=2, i=2,4,5,7,8,9.

In order to evaluate the partition function, one needs to
know not only the degeneracies but also the states and
the associated energies. These can be obtained as
follows:

(1):
[¢1) = C*PPDE ™" | §) = | nyy, g, Mag, Mg, Mg, M)
= ]ni— 1-x,2¢,ny-x,ny—2-x+y—-2,2¢— 2y + 2z,
-x+y-2z), (3.12)

If ny, 1y, nyy, My, are chosen as variables, x, v, and 2
can be solved in terms of them, The solutions for this
case are

X=Ny—Ngy, Y=My~-Nyptz, z2=2. (3.13)

In terms of ny, %y, ¥y, and m,,, one has

| 1) = [ny = ny = myg = 1, 200y = 1g3), mgp, my = Mg + M55 — 2,

2(ny — myp), M) (3.14)
E{=E_ - (vq; + 2uyy), (3.15)
C.C. Yan 1686



where

E, = (vy+vgq Hugng+ vy = 0yg + 2055 — gy + 2upp)ny

+ (Vg = 20py + Vgg)igy + (g — 2045 + Ugy) Mgy (3.16)
and
M= <n2_"22_ 1 )<n1‘"2+"22‘ 2)("2‘”22)("22— 1> )
z \Wgg — Ngg + 2 Ny = Mgy = 2 b4 z-1
(3.17)

The summation of z over all positive integers arises
owing to the fact that the final state is independent of z.

The rest of the cases can be similarly worked out.
The results in terms of 7y, ny, 1y, and my, are

(2):
|dg) = |ny =1y + 199 = 1, 200y = m3), g,y — 1y + 1195 = 1,
(3.18)
(3.19)

2(np — mgy) = 1, My),

Ey=E, - (3 +uy +uyp),

_ My — Hgg — 1 "1‘7‘2+"22—2)("2‘”22)("22-1)
Mz—?2<m22—n22+z>(n2—m22—1—z z z-1/"

(3. 20)
3):
| b3) = [ng = my + gy = 1, 21y = 1y, Mg, 1y = 1y + g,
2(ny — Mgy — 1), myy) (3.21)
E3=E_ - (v11 + 2uy), (3.22)

_ ny—tgg—1 \fny—nyg+ny—2 (nz‘”n)(”zz—l)
Ms_?(mzz‘"22+z><"2"mzz—2—2 z z-1/"

(3.23)
4):
| $0) = |1y = my + 13y, 2005 — m33) = 1, g,y = 1y + 1195 - 1,
2(ny — mgy) = 1, myy ), (3.24)
Ey=E - (v1s t gy +1uyy), (3. 25)

M=% 2("2,‘ "22'1)(”1‘"2“'”22—1)("2—"22—1)
z mzz—n22+2 nz—mzz—l—z 4

x (";2_‘11) : (3. 26)
(5):
[ 05> = |ny = 1y + gy, 2015 = mp3) = 1, Mg, 12y — 1y + g,
2(ny — Mgy — 1), myy), 3.27)
E;=E, - (v1y +2uy), (3.28)

Ms:z;2(”2'"22-1)(711—71«24‘1122—1)(712—7;22_1)

z mzz—n22+z nz—mzz—z—z F4

x (”222_‘11> . (3.29)
(6):
|66) = [my = 1y + gy + 1, 2y = ngg = 1), myg, 1y = 1y + 11y,
2(ny — myp — 1), myy), (3.30)
Eg=E,— (2vyp + 2uyp - vyy), (3.31)
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Mo — Mgy — 1 ny—ny +n Ny — Mgy — 2
M6=Z)( 2~ ( 1= M 222 )(z 22
2 1’}122—7222 2 n2—7n22— -z 2

x(’?z_ 11). (3.32)
(7):
[ b7) = |2y = 1y +13g, 2005 = m33) = 1, g, 1y — 1y + 113,
2(1y — Mgy — 1), Mmpg), (3.33)
Ey=E - (vyp +2uyp), (3.34)

- g =1y = 1 )("1‘"2‘*"22‘1>("2—"22-1>
M7_?2<m22—n22+1+z Ny — Mgy ~1-2 z

x(”éff). (3. 35)
(8):
|80 = [ny— 7y + 1039, 200, — 15) = 1, 99, 0y = My + 19y +1,
2(ng — myp) = 3, Myg) 5 (3.36)
Eg=E_ ~ (vyy +3uyp —uyy), (3.37)

_ My — My — 1 n1—n2—n22—1> Ny =1y -1
Ms—?2<m22—n22+1 +Z)(n2—n222—1—z V4

x ("222_'11) . (3. 38)

(9):
| dg) = |y = g + 1y +1, 2005 — gy = 1), gy, 1y = 1y + 3y +1,
2(ny — myy) = 3, myy), (3.39)
Eg=E - (ug+3ugp — vy~ uyy), (3. 40)

_ Tty = Hgp ~ 1 ( iR )(’%‘"22‘2)
Mg“?z(mzz—n22+l+z> My — Mgy —1 -2 z

X (nz"__11> ) (3. 41)
(10):

| 100 = |my = 12y 11y + 1, 2y = 1y = 1), gy, my — 1y + 15 + 2,

2(ny — Mgy — 2), Myy), (3.42)

E\ =E_ - (2vyy + duyy — vyg — 2uy,), (3.43)

M= 1 )("1'”27”122)("2—”22-2
07 T N\imgg = ngg + 2+ 2) \ny— gy — 4 - 2 z

Nyg ~ 1)
X <z _1/" (3.44)
Finally the partition function is given by
10
zdnhy= 2 [E M; exp(- BE‘{I' (3. 45)
n2empg Lis=t
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It is shown that a matrix representation with properties analogous to the ones that hold for the bounded
operators in Hilbert space is possible also for important sets of unbounded operators. These sets consist of
the *algebras C;, of the linear operators on any noncomplete scalar product space D, which have an
adjoint in D. (These algebras have already been studied by the author, in collaboration with others, in
previous papers.) Specifically it is proved that for these operators a matrix representation is possible with
respect to an arbitrary orthonormal basis within D, in contrast to the situation that has been found by von
Neumann for the unbounded closed symmetric operators. The matrix representation of the operators
considered here also allows the usual algebraic operations. Besides, the changes of basis induced by

automorphisms of D are allowed.

1. INTRODUCTION

It is known that the operators in quantum mechanics
are often unbounded!: for various reasons they are of
course usually closed, hence they cannot be everywhere
defined on the Hilbert space H because of the “closed
graph theorem.?’ This situation contrasts with the one
that occurs for the bounded operators defined every-
where on a separable Hilbert space, which admit a
matrix representation in complete analogy to the opera-
tors of finite dimensional spaces.?

As early as 1929, von Neumann remarked® that if
one tries to get a matrix representation of such opera-
tors unexpected pathologies occur which make it very
difficult to construct a theory on such a basis, [The
subject was closely connected with the “new quantum
theory” (matrix theory and transformation theory) which
was born a few years before and where the unitary
transformations of Hermitian unbounded matrices play
a fundamental role. |

More precisely, if A is any unbounded operator in H,
with dense domain D,, and if (e,) is an orthonormal
basis in D,, then it is always possible to define the
matrix (4,) with 4, = (Aeu/eu). However in general
such a matrix does not represent A. Nevertheless, von
Neumann proved® that in the case of any closed sym-
metric operator A it is always possible to find an ortho-
normal basis (e,) in D, in such a way that the corre-
sponding matrix represents A, However the basis (e,)
for the representation cannot in general be arbitrarily
chosen within D,. (The matrices which represent
closed symmetric operators have the properties

AHU:ZW, EuiAuvP:Eu‘Auu|2<w’

and are called “Hermitesch quadrierbar” by von
Neumann and “C-matrices” by others).

From the foregoing it follows that further difficulties
arise when changing the basis (even within DA). Von
Neumann introduces the concept of unitary equivalence
for systems “matrix—basis” (two such systems being
equivalent whenever they describe the same closed
symmetric operator), and he finds in particular that
this equivalence is a reciprocal property, but it is not
transitive.

Of course von Neumann’s theory concerning the
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pathologies of unbounded closed symmetric operators
has not always been taken into account by authors in
quantum mechanics and in particular Dirac in his
famous treatise® states: “Any linear operator is repre-
sented by a matrix” and gives properties of such a
representation which are certainly true for bounded
operators. The arbitrariness of such a statement has
also been pointed out in recent papers.”’

In this work we show that a matrix representation,
having properties analogous to those that hold for
bounded operators, is also possible for important sets
of unbounded operators, defined as follows. (We have
already studied them in previous papers?® in collabora-
tion with other authors. )

Definition 1: Let D be a scalar product space., We say
that a linear operator A defined on D has an adjoint A*
in D whenever there exists a linear operator A* defined
on D such that

Yo,pcD, (Ap,d)=(p,A*P).
We call C, the set of the linear operators that are de-
fined on D and have an adjoint in D,

We also note the following propositions®:

Theovem 1: For any scalar product space D, C,
(endowed with the natural operations) is a x-algebra of
closed operators.

In this paper it is proved, under the assumption of
separable D, that the elements of C, may be repre-
sented by matrices with respect to any arbitrary basis
in D, Also the changes of basis induced by the autho-
morphisms of D are allowed. Moreover, the repre-
sentation provides an isomorphism of the x-algebra C,
onto a x-algebra of unbounded matrices.

From the mathematical point of view these results
support that, as already put into evidence in our pre-
vious works, C, is the most natural algebra of un-
bounded operators that reduces to'® / (H) when D is
chosen to be complete.

From the point of view of the applicationsto quantum
physics, these results provide a justification of the
use of matrices to represent the algebra of the opera-
tors of H that arise in important physical problems.

In fact the results may be applied whenever all the
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operators A;, together with their adjoints, are
defined on a common invariant dense subspace D of H

A,DCD, A}DcD, D=H.
That is the A;’s belong to the algebra C,,.

These conditions are well known to be satisfied by
the algebra generated by the “smeared” Wightman
fields. 2

They are also known to be satisfied by the algebra
generated by the operators describing the canonical
coordinates, momenta, and the total energy of a non-
relativistic quantum system of # interacting particles
where the potential energy satisfies some regularity
conditions,!® provided D is suitably chosen.

2. MATRIX REPRESENTATION OF OPERATORS OF
THE *-ALGEBRA Cp, FOR SEPARABLE D

Let us preliminarily introduce the following defini-
tion and a theorem which we have already proved in a
previous work?:

Definition 2: Let D be a scalar product space. We
call D, the space D endowed with the “D-weak” topology
determined by the set of seminorms

{o = [(e,9)| |ve D}

Theorem 2: In order that the operator A belong to
C, it is necessary and sufficient that the operator A be
continuous in D, .

We are now ready to prove the possibility of the
matrix representation for the operators of C, with
respect to any basis which has been arbitrarily chosen
in D,

Definition 3. Let A be a linear operator defined
everywhere in the separable scalar product space D,
let (e,) be an orthonormal basis in D and M=(4,,), an
infinite matrix. We say that the matrix M represents
the operator A relative to the basis (e,) if

Vo=2J te,cD for y=Ae@ with y=2J ,n.e,

1 1

we have

0

nu = IE VALLllgV'
Theovem 3: Every operator Ac C,, (for separable D)
admits a matrix representation with respect to any
orthonormal basis in D, In this representation to the
operator A* (the adjoint of A) corresponds the matrix*

M* =(A*%,) with A*, =2

5

e

Proof: Since we consider on D both the norm topology
defined by the scalar product and the D-weak topology
of Definition 2, we use the symbols “s” (strong) and
“w” (weak) to indicate the limits in the first and second
topology respectively.

Let (e,) be an orthonormal basis in D; we have

YoeD, ¢=2,, te,=lim Sﬁg,ev with £,=(¢,e,),
1

peo 1

but since D-weak topology is coarser than the strong
one
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n
YoeD, ¢=limY2 ie,.

nw e 1

Then

VYyoe D; (A(ﬂ)u = (A(pieu): (AlimWE v Eueweu)

nee 1

n n
=lm(A2 , te,,e,)=lim 2 £ (de,e,).
nee 1 neco 1
We have made use here of the linearity of A and of
its weak continuity stated in Theorem 2.

Introducing the numbers
AUV = (Aell’ eu)

we have

vo=20,¢e,€D for p=A¢
1

with ll)ZE ane,,, 7)“ :E uAuugv‘
1 1

So according to Definition 3 it is proved that A admits
a matrix representation in D with respect to the basis
{e,) and its representative matrix is M(A)=(4,,).

Moreover A* belongs to Cj, and, by Theorem 2, it is
continuous in D, therefore it also admits the matrix
representation and one has

4:(1/: (A*eu’ eu)z (euJAeu):A_u:'

It is obvious that the orthonormal basis (eu) may be
arbitrarily fixed in D.

We have seen that every operator of C; generates an
infinite matrix M(A). Let us pose the converse problem:
What kind of elements A, must an infinite matrix have
in order to yield an operator of C,?

Theovem 4. Let D be a separable scalar product
space, {(e,) an orthonormal basis in D and d the linear
manifold®® of {2 which is canonically isomorphic to D.
In order that the matrix M=(4,,) represents an opera-
tor Ae C,, with respect to the basis (e,) it is necessary
and sufficient that

@) V(E)eved, (D,4,8).cved,

(b) Y(£)encd, (2, 8 ) cyed,
(C) V(g,,),,(_-NEd, V(ﬂu)ucy Cd;

Proof: The necessity of conditions (a), (b), and (c)
is evident. In fact if

then

EvAuvgw I.L:(l,z, 'D')’

1

are the components of the vector ¢=A¢. Moreover,
since A* € C,, and M(4*)}=M*(4),

?uA:uguZIEuZ—u-;gu’ v=_(1,2,-+),
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are the components of the vector x=A*g
Lastly, from the definition of the adjoint (Definition
1) one has

V(P:i J£.,€D, Vzb:;?vnueve D, (Ap,d)=(p,A*y).

Therefore
v(gv)uEN€d9 (Tlu)uENGd,
Elu(é? E AT, =20 5 (20, 4,,0,).

We turn now to the proof of the sufficiency of the
above mentioned conditions. If the elements of the
matrix M=(A,,) satisfy condition (a), (4_,) represents
a linear operator which is everywhere defined in D,

A: (gu)uEN - (Z:';vAuugv)ueN'

From condition (b) also M* = (A% ), with 4% =4

represents a linear operator B wh1ch is everywhere
defined in D,
B: (£,),cwn

and one has

(Z; uAqu )VCN:(?—E\J uAuvgu.)VEbH
1

© ©

Vo, yeD with o=2, Le,, =21,
1

©

(40, 0=2,(5, £,4,)7,,

© o

=2, 5,20 AR5, = E 5(2 ALm).

1

(¢, By)

Hence from condition (c)
e, veD, (Ag,y)=(¢,By),
and, from Definition 1, B is the adjoint of A,

So it is proved that the matrices which satisfy the
conditions (a), (b), and (c) represent linear operators
everywhere defined on D, with adjoints in D (see
Definition 1), hence operators of Cp.

Theorem 5: Let D be a separable scalar product
space and (e,,) an orthonormal basis in D, Let us call
d the linear manifold of I*> which is canonically iso-
morphic to D and /1, the set of the matrices that satis-~
fy conditions (a}, (b}, and (¢) of Theorem 4. Then, if
we define matrix addition, matrix multiplication,
scalar multiplication, and the adjoint matrix as is
usual, /”4 is a *-algebra and the matrix representation
A~ M(A) of the operators of C,, provides an isomor-
phism of the *-algebra C, onto the *-algebra’’ /.

Pyoof: The fact that A — M(A) is a bijection of C,, onto
M, follows directly from Theorems 3 and 4 and from
Definition 3. In fact, for any fixed orthonormal basis
of D, every operator Ac C,, according to Theorem 3,
is represented by a matrix M(A4) which, according to
the necessity of conditions (a), (b), and (c), of Theorem
4, belongs to/Ml,. So A~ M(A) is a mapping of C,, into
M,. 1t is implicit in Definition 3 that, whenever an
operator is represented by a matrix, the matrix deter-
mines uniquely the operator (explicitly, for the opera-
tors of C,, this fact depends on their linearity and
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continuity in D, which is stated by Theorem 2 and used
in the proof of Theorem 3): So the mapping 4 ~ M(4) is
injective, The surjectivity is stated by the sufficiency of
the conditions (a), (b}, and (¢}, of Theorem 4.

There remains to prove
M(aA + BB) = aM(A) + BM(B),

M(AB)=M(AIM(B), M(A*)=M*(A).

The proof of the first and the last relation is imme-
diate, concerning the second one we have
,=(AB, e, )= (Be, A*

(M(AB)), e)=5 (Be, e e, A%e,)
1

WZ(Be e NAc, e,) =3

Pl

(M(B)),,(M(4)),,

Il

So the theorem is proved.

In order to develop the analogy between the matrix
representation of operators belonging to C,, and opera-
tors in finite dimensional spaces, we consider now any
change of basis induced by an automorphism U of D,
The treatment of more general cases goes beyond the
framework of this paper.

Theovem 6: Let {e,) and (/) be two orthonormal bases
in the separable scalar product spaces D, M(A), and
M'{A), the matrices representing any operator Ac C,
with respect to the bases {¢,) and (e!) respectively. Let
U be the operator associated with the change of basis,
that is Ue,=¢/: if U is an automorphism of D, then the
following relation is valid:

M'(A)= MU MYMAM),
where
M), = (Ve,,e,).

Proof: Since U is a unitary operator on D, it is an ele-

ment of C,, hence we have
(M'(A),, = (Ae!, e’ )= (AUe,, Ue )= (U-'AUe,, ¢ )

= {(MUAD),,, = (MU-YMAMD)),,

SOME NOTATION

(o, ¢) scalar product of the elements ¢ and ¢
A¥* operator adjoint of the operator A
AL matrix element

(a,,) matrix

(A%) matrix adjoint of the matrix (4, )
{e,) orthonormal basis (e, e, =+ )
(&,),cn infinite sequence (£,,%,,***)

n ©

ZV, v summations

1

B conjugate of the complex number &
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In this paper we investigate the dynamics of a model for a three-level atom in interaction with a radiation
field. The exact solution to the spontaneous-emission problem is derived using methods developed earlier by
the authors, and expressions are obtained for the probabilities of the atom’s being in the first or second
excited states at any time t. For the special case that the strengths of the coupling between each of the
excited states and the Ath mode of the field are proportional, detailed conclusions can be drawn concerning
the effects of such factors as system size, coupling function, and level splitting on the temporal evolution of
the system. The evolution of excited quantum systems having one versus two modes of decay to the ground
state is also compared, and similarities and differences in the temporal behavior are noted. Finally the

relevance of the theory presented in this paper to experimental problems in radiation chemistry and physics

is indicated in our concluding remarks.

1. INTRODUCTION

The model to be discussed in this paper is one of a
three-level quantum system interacting with a one-
dimensional radiation field. The three-level system will
usually be thought of as an atom with three accessible
electronic states between which transitions occur with
emission or absorption of radiation. The “atom” could
just as well be a molecule, and the radiation field could
be a phonon field, a set of closely spaced molecular
states, or any of a variety of things, since the model is
stripped of all complications—spin, three space dimen-
sions, and so on—in order to make the method of solu-
tion as clear as possible and to show its generality.

This work has arisen out of previous work of the
authors (Refs. 1—7, hereafter referred to as I—VII,
respectively) on a similar model for a two-level quan-
tum system, in particular, the work reported in Paper
VII of the series. The techniques evolved there are
used for the present model, and are capable of much
further extension. Although making the step from a two-
level system to a three-level one may not seem very
exciting, there is in fact a substantial increase in the
structure of the model. Some of the effects which be-
come available for discussion are phosphorescence and
fluorescence, competing decay modes, and the like.
Such effects may indeed be modelled only crudely by
the system described here, but the model is solved ex-
actly, and its extension to more realistic systems is
certainly possible.

The atom, or quantum system, then, has three states
open to it, 13), [2), and |1). Transitions between any
pair of them can occur under the influence of the radia-
tion field, the assumption being that no quantum num-
bers are involved other than 1, 2, 3 and those of the
field. This means that the atom is held fixed in space—
it may be thought of as having infinite mass so that it
does not recoil when it emits radiation. The field it-
self is described in terms of the creation and annihila-
tion operators, af and a,, of the Ath mode of the field.
Formally the Hamiltonian is

H=Ties | 3)3| +hiey | 2)(2 | + 25 $hiwyata,
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+? {hfa;f|2><3| +hml3><21
+grar | 1)@] +ga,|2)A]

+fx*af|1><3| +fxaxl3><l|}> (1)

where 7#€; and 7k, are the energies separating states
[3) and |2) from i1), #w, is the energy of a photon in
the Ath mode, and the quantities ,, g,, f, measure the
strength of the coupling between the atomic states and
the field (they are more or less the transition “matrix
elements”). Further, the a, operators are defined by

(my, iax lm>\> = (m, la{‘ i”ﬁ
= [z(n)\ + 1)]1/2 6Kr("”). % l)a

where the state ln,) is that with », photons in the Ath
mode of the field, and 8%7(-+-) is the Kronecker delta.
The product states

b = 1911 Im) (G=1,2,3; m,=0,1,2,++9)

define a basis for the Hilbert space of the problem.

We shall be interested throughout this paper in the
spontaneous emission of the atom from state 13), that
is, in the evolution of the system from the initial state
I3)I1,10,). At this point, a complication arises that is
absent in two-level models. The transitions admitted
by the Hamiltonian of Eq. (1) allow the atom to decay
in two stages from |3) through 12) to 1), with a photon
emitted at each stage. Then one of these photons can
be reabsorbed with the atom returning to state [3), still
in the presence of the second photon. Such processes
do not, of course, conserve energy—and if account is
taken of them, the model is no longer in general exact-
ly soluble. For both of these reasons, then, the trouble-
some processes will not be allowed. This means that
the matrix elements of H between those states
111,011, )I'I,_ﬁl'lz |0,) that are accessible from
[3) I1, 10,) and 13) [1u1> ey {0,) should be zero. This
will be rigorously true if %, and g, are nonzero only on
a set of A for which f, is zero. In this case, we are en-
titled to restrict H to the subspace spanned by the vectors
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]3)[3 [0y written now as
IZ> ‘ 1a1> 7‘1*_{1 I 0 written now as
(D1 1, I L) m‘?ﬂ? [0y written now as
112, "gi |0, written now as
|11, *5’{1 |0y written now as

since H has no nonvanishing matrix elements between
any of these states and a state not in the subspace
spanned by them. What we shall now do is to restrict
the Hamiltonian to this subspace, or “sector,” anyway,
without necessarily imposing the condition given above
for the vanishing of f, where £, and g, do not vanish,
This procedure in effect changes the Hamiltonian of the
problem to the following:

H=Tiey | 3)(3] +20 7rles + w,) | 2;0)(2;1 |

+§: ?«Z h_(w‘i + w)t2) } 1, 7‘2><1§)L15 Ay '
1<4

+§3 27w, [ 1;21)(1;2x | J@ Frw, | ;0015 |

V2 T H 26D D &t 1%, M|
A A{>Ag

+23 E{g{‘; |10, ) @50 | +27 g% VB | 1;204250 |
preeys

+25 £¥|1;2¢3| + Hermitian conjugate} .
A

2

The factors of v2 take account of the matrix elements
of the a, and af. Without the proper condition on f,, this
is not the same Hamiltonian as that of Eq. (1), but it
has the advantage of yielding an exactly soluble system,
in which the allowed transitions are as shown in Fig. 1.
If there is good physical reason to believe that the
scheme diagrammed in Fig. 1 adequately represents
the processes of interest in some situation, then the
modified Hamiltonian of Eq. (2) should be applicable,

The plan of the paper is now described. The resolvant
of the modified Hamiltonian, Eq. (2), is studied in Sec.
II, and the exact solution for the spontaneous-emission
problem is presented in Sec. III; we obtain, for any
time ¢, the probabilities of the atom’s being in the state
13) or state 12), In Sec. IV we explore the consequences
of introducing the simplifying assumption that k, and g,
have the same sort of dependence on A, that they are
in fact proportional; a numerical analysis of this special
case is reported in Sec. V, and the features which
characterize the system’s evolution are identified and
discussed. The final section is given over to a critique
of the model investigated here, and attention is drawn
to further problems in radiation theory accessible to
exact analysis, given the methods developed in this
paper.
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[3),
12;),
,1;)‘1’ )\2>,

with Ay <2y, for some ordering of
the modes,

‘ 1!2)\1>}

[1;0)

[
. THE RESOLVENT OF THE MODIFIED

HAMILTONIAN

A discussion of the spontaneous emission of the atom
from state 13) leads to an initial-value problem. Such
problems are usually best handled by use of the re-
solvent of the Hamiltonian. If our system at time #=0
is in the state [¥(0)), then at a later time { it is in the
state

[ ¥ (1)) = exp(~ iH1/7) | ¥(0))
=(1/2m) [, dz exp(-izt)(H/h - 20t |[¥(0),  (3)

where C is a Bromwich contour taken parallel to the
positive direction of the real axis of the complex varia-
ble z and above all singularities of the integrand. The
operator (H/7i— z)™! is what we shall call the resolvent
of the Hamiltonian. The spontaneous emission problem
will be solved if

(H/7% - 2)"1|3)

can be found, that is, if the equation

(H/~2)|2)=3) 4)
can be solved for {$).

The way in which Eq. (4) is solved is very similar
to that used in Paper VII of the authors’ series on two-
level atoms (Refs. 1—7), but most of the details will
be given here so that this paper may be more or less
self-contained. First, it follows straightforwardly
from Eq. (2) for the Hamiltonian that

(H/7i-2)|3)
== 2lo+ 6T{T a2+ T s v,

13>

hy

{2: x>

f
A N

[RER. %4 [RER. VIS P
{1;2h>

FIG. 1. A schematization of the model for a three-level atom
considered in this paper.
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(H/l-z)|2))
= (€, + wy — 2) IZ;A)+\/_Z_/h’{h>‘|3)+ ‘;)‘ gu*ll;)\, 1)

+ MZ;; aX [, 1)+ g2 1,201,

H/TE = 2) {1,204, 2)
= (u,\,‘1 + uu)‘2 -2z) ] 10, 2 + (V2/h) {ghi i 2;0,) +gk2 12;7&1»,

(H/f~z)]1;2))
= (20, - 2) | 1,20 + (/g V2 | 2,0},
H/E-2) 1)) = (0, - 2) | 10 + 2/ 7, | ). (5)

The unknown ket!®) can be expanded in terms of the
basis states:

|2) = 33) +ZQ N ERVEDIPY Pringagl Lides 20)
2,

2 b1 120420 o4 10

This expansion is now substituted in Eq. (4) and use is
made of the relations (5). The result is a set of linear
equations for the ¢ coefficients:

(eg—z)¢3+<ﬁ/ﬁ){§) hadan+ 2 fm,;x} =1,
(ez+wh—z)¢>m+(\f2—/ﬁ){h§¢3+§ ZuPiiun
+ 20 &bt + 82 dynt=0,
(s, + @y = 2) Sipan, + V2080 ain, + 83 Pyt =0,
(2w, = 2) G0 + (V2/ I g* V2 630} = 0,
(w, = 2) by + (V2/BfF b5} = 0. (6)

From these equations, an equation involving only the
coefficients ¢,;, can readily be obtained:

21g,1% 28, ¥ b,
(52+“’,\‘Z-Z§ o +a =2 & )‘152;7«‘2‘; 2 i,ﬁ%—}"‘%x_z)

(w,+ w, - 2)

x5 AR -1 V2
__ hhh’z [6;;—2-@%?(11_)] [1——%? hx‘?z;x]-

w, -2
M

This equation is of the same kind as Eq. (7) of Paper
VII. It is not surprising that this should be so, since

the Hamiltonian that gave rise to that equation was simi-
lar to ours of Eg. (2). It modelled in a certain sense
one part of the problem being treated here, namely the
emission of a two-level system in the presence of a
photon. It will become clear that the solution of that
problem leads to the solution of the present one.

In addition to the ¢,;,, we are interested in ¢;. It is
readily obtained from the ¢,,, by use of the relation

2 -1

z

which follows, as well as Eq. (7), from Egs. (6). It
is noteworthy that

~ Qs hIV2/H
is therefore nothing but the right-hand side of Eq. (7).
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Some further definitions will make it possible to
simplify the expression of Eq. (7). Let

217,12 )

1
F(Z’:ﬂ?<e3‘z‘? (w0, = 2)

_ 1 2ig, 11
me =5 (22 i),

w, -z

w
1 2
A= (1- - ? h@m). (9)

The functions F, H, X, depend on z above and are
meromorphic functions with poles at the points z=w,.
The residues of X and H at these points are as follows:

Res,, X =~ SrPe;0/ 21,

(10)
Res, H=2lg, 12 /2mint.
Equation (7) is therefore
H(z ~ 3} Res, X+ X(z - w,) Res,, H
_ gahf V2 R A
=@ " FE) (1)

In this equation, the function X is unknown, and z may
be regarded as a {nonreal} parameter. The number A
depends on the unknown quantities ¢,;, through the sum
Zahatg;y, but does not depend on the variable w, in

Eq. (11). Consequently, A can be regarded as a con-
stant in the solution of Eq. (11), to be determined sub-
sequently. Now, in paper VII, the following equation
was solved in detail:

H(z - 0)) Res,, X +X(z - w,) Res,, H= - g(2)/(2mi).

(12)
The solution is rederived for convenience in the
Appendix. All that is needed to obtain the solution of
Eq. (11) is to substitute for g,(z) in Eq. (12) the quan-
tity
amvz A
T r Fl2)

This is done in the next section.

(13)

iti. THE SPONTANEOUS EMISSION SOLUTION

The solution of Eq. (11) follows from Eq. (Al12). We
have the quantities Res, X and Res, H from Eg. (10),
and, following Eq. (A5), we use Eq. (13) to make the
definition
A E 1 ekt
Flo) 7 @mi)? F w,—¢’

GE) =~

The solution is then

_zg)‘* 1 1
o= Ht Hiz) & (£, -w)H'(£,)H(z-E,)

ClE,) ~ Gle) + Cle - £,) = Glz = &)
X2 HE)H = £) : (14)

The £, are the zeros of the function H(¢) (as explained
in the Appendix) and
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Hy(2) =KE (1/H!(E) H(z - £)]. (15)

The function & still involves the unknown number A. It
will be convenient to make this explicit:

[A/F(2)] G(£) = C(8),

where G(£) is just

v o1 ahk
TE @mnyr g w:—xg : (16)

Now A is defined in Eq. (9), and so from Eq. (14):

1-2mA= ﬁh_f— ZA) NI

2 1 V2 gkn 1 A
7 H,(2) Z T ? £, - :»x H'(E)H(z-t,) F(2)

3 GlE,) = Gt + Glz = £,) - Gle = &)
K H’(E)H(Z—E)

A G(&,)
n F(z)H(z) & H'(£,)H(z-&,)

Gt )-GlE)+Glz-£,)~ Gz - &, )
Xz H'(E)H(z - £,)

where the bar denotes a complex conjugate. The number
A can now be determined:

1 2w
A“ﬁ{l-*- F(z)H,(z) m

E G(t,)

H'(E,)H(z-£,)

G(t,)-Glg) +Glz=-£,)-Glz-¢) | -
XKE H,(gx)H(Z_ Eg) }

From Eq. (8) we are already able to obtain ¢;:

A
¢3=m
1 2m 2 G(&,)
=om {F(”H()E"? HEJHz-E,)

xz GE,)-GEI+Gl—-¢, )-G(z_gx)}-i )

H'(,)H(z - £,)

The solution for ¢,,, can be expressed in terms of
this:

__ng* @3 1
= 7l H,(2) %; (£, —w)H'(E)H(z~-E,)

G(gu) - G(En) + G(Z - E ) - G(Z - ‘En) .
% HE) Bz - £) (8
With ¢3 at our disposal, we may form the probability

amplitude for the atom’s being in state [3) at time .
From Eq. (3)

@)= py(t) = 5= f dz exp(- izt) ;. (19)
[o}

This integral can be evaluated if we know the singulari-

ties of ¢; as a function of z. From Eq. (17), these are

the zeros of the function

G(t,)

o 27g
D(z)=2mi {F(z)+H @ 7 “I E IT)H(‘;—?—)

G(E,) = GlE) + Glz — £,) ~ Glz - £)
xZ H(EJHG=£)
(20)
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Now this is another meromorphic function, and its poles
are at the points z=w, [from F(z)—see Eq. (9)] and at
the zeros of Hy(z). The Mittag—Leffler expansion of
1/H(£) can be used to furnish the expansion of H,(z).
From

1w 1
HD =% HEIE-5)
and the definition (15) of Hy, it follows that
1
) =% I G-E, —5)" 1

Thus Hy has a series of simple poles at the points
z=§, +&,, and its simple zeros consequently interlace
these zeros (all real) by a set ¢, (for a more detailed
discussion of these matters, see Paper VII). The func-
tion D has no other poles, although it might seem that
there were others at the points z=£, +£,. But since H,
also has poles at these points, it can be seen by a
straightforward but rather tedious calculation that D
is not singular there. Since, further, the second term
on the right-hand side of Eq. (20) tends to zero as

z —=, D may be written:

2
D(z) =¢3- -L:, ﬁz(gl_z)
s 1 2 _GlE)
+ (2m) ? )@ -5y ﬁfZ‘) H'(E,)H(E, - E,)

G(gh - &x) .

3 Ol) = GE) + Gt~ E,) -

H(E)H{(G, - £ 22)

This is then the Mittag—Leffler expansion of D, and,

by an argument similar to the one used for H,, the zeros
of D, at z=¢,, say, interlace its poles at z=w, and
z={,. These zeros are all simple. It is then an im-
mediate consequence of Eq. (19) that

exp(—ig, 1)
j; dz exp(- zzt) Zu) s,

(23)

Equation (18) for ¢,;, can now be examined. We have

¢3(t) = 2_;lr—

@A) = ¢y, () = 5-71; -/c. dz exp(-izt) ¢y, (24)

and
_2gr 1 1
__ﬁ%_ D(z) Hy(2) %: (£, —w)H'(E)H(z - E,)

Cl62)= 66+ Cle =) Gla =5
2 HUE) H(z ~ £

The singularities of this function are at the same points
as those of ¢;, viz. at z=¢,. As before it can be seen
that there is no singularity at the points z=§¢, +£,, and,
although H(z) is zero at the points z =¢,, it is clear
from Eq. (22) or Eq. (20) that D(z) H(z) is not, It then
follows at once from Eq. (24) that

2 3, emlisg
Pl =T 2 Fra e
X Z !

(& ~ ) H'(E,) H($, - £,)

G(EE) - G(E )+ G(‘Pu" gu) - G(¢v" E )
2 H'(EJH(G, - £)
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More interesting than ¢,,,(f), perhaps, is the total
probability that the atom be in its middle state, 12).
This probability is

2;1 I¢2;x(l‘)lz-
To evaluate this quantity, one needs the sum

21g, 1?
? BHE, - w) (€ w,)

It is not difficult to use the definition of H(z) [Eq. (9)]
to see that the sum is

~1-2mH'(£,)0

ot

The two terms of this expression will give two contribu-
tions to 3, [¢y;,(¢) I*. The first (from - 1) is zero, since
it is
2 exp(—ig,) 1

Z} v
7 | & Do) He) ¥ FEIHG - _

Gt,) - G(E) + G(9, - £,) - Gl¢, = &) |*
X2 HEJH($, - £) ’
which vanishes because interchanging p and k¥ merely

changes the sign of the summand. The second con-
tribution, and thus 3,1 ¢,,(f) ¥, equals

exp(~ i,t)
D(¢,)Hy(9,) H(d, ~ £,.)

G(E,) - G(E) + Gl¢, - £,) - G, - &) |
X“E HI(&K)H((pv— ‘Ex) ’ (25)

This result, along with Eq. (23), completes the solution
of the problem. We have obtained, for any time #, the
probabilities of the atom’s being in state 13) or state
12), In the next section, we shall make a simplifying
(and restrictive) assumption which will make our ex-
pressions much less complicated, The numerical calcu-
lations described in Sec. V will all be based on these
simplified expressions.

21 51 2 e | 2

IV. APARTICULAR CASE

The simplifying assumption we shall make in the rest
of this paper is that &, and g, have the same sort of de-
pendence on A, that they are in fact proportional:
h,=7g,, say. In a realistic three-dimensional model,
this would mean that the transitions 13) — |2) and
[2) = |1) (but not necessarily {3) — |1)) were of the same
electric or magnetic multipolarity, but not of the same
strength, The relative strengths are measured by the
constant », which may be any complex number, although
here it will always be taken as real for simplicity. With
our assumption, then, the functions G and H become re-
lated. From the definitions in Eqs. (9) and (16):

Y2y Igl?
G == 5 G & v,z
173 .
=-7 (_2%52 [ez_z—ZmH(Z)]-

Then the ubiquitous expression from the preceding
section,

G(Eu) - G(gk) + G(Z - gu) - G(Z - EK)}

simplifies to
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)
\/—2— —Z%Z[H(Z-Eu)_H(z_EK)] (26)
since

H(E,)=H(E,)=0.

Equation (20) for the function D becomes

_ 1 ¥? E €-£,
Hy(z) (@mi)* & H'(g,)H(z-E,)

D(z) =2mi {F(z)

\ H(z-t,)-Hiz- &)
% THGOHG- £ } ' @)

This can be reduced further with the help of the follow-
ing relations:

1

H(E) A ) (15)

H1(Z)=KZ

b 1

W H'(E,)

£y
Zu> H'(¢,)

- 27,
= - 2rie,, (28)
2 E )=2772 +32H,(2).

1

S PR
o H'(gu)H(z -

Equations (28) are all proved similarly. For the first,
we notice that

1 1 [ 4
¥ H'(5)  2m Jg H(E)

(by the residue theorem) where S is a large circle de-
scribed in the positive direction. But since, by the
definition of H,

lim [£/H(8)] = - 2mi

(29)

and since this is the residue at infinity of the integrand
in Eq. (29), then

? (1/H'(¢,)] = - 2mi.

For the second of Eqs. (28), the appropriate contour
integral is

(1/2m) [ dt [G(E)/H(E)]

which is zero, and for the third equation, the integral
is

(1/2mi) f; dt [e/H(E) Hz ~ £)],

which is 4n°, The details of these derivations are easy
and are omitted. Use of Eqs. (28) in Eq. (27) gives

D(z) =2mi F(z) - V*[e, ~ 32 - 2n%/H,(2) . (30)

An asymptotic expansion of H(z) for large izl can be
derived from Eq. (21) with the help of Eqs. (28). Itis

47’ 8n? 1
-2 - 5 0(3),

whence one obtains

L ..2172 ~ _]L —> 00
ez—zz—Hi(z) 0 >) as 2 .

Consequently, the Mittag—Leffler expansion is

R. Davidson and J.J. Kozak 1696



a2 a1
@8- 5 )= Y e G

so that, finally,

|
—Z—? z(fu )

D(z)=¢4 ”
13

— 27t E (31)

H1(§L)(€A z)

The next expression which can be simplified is that in
Eq. (25) for

; l ¢2;7«(1) I2_
With Eq. (26), one obtains:

. 1 1 -ip,
?l(f’z;x(l‘)’zz—%nrz%; m > M

2mi D (s,)

2

Z exp(—i,7)
D’(¢u)H1(¢V)H(¢v-§ )

Since £, is real, H'(gu) =-H'(£,). A little more calcu-
lation with Eqs. (28) then yields

Azlm;x(t)J?:rZ {— [ps(t) |? +2mE

H'(Eu)

exp(—i¢,t)
2 -Eu)‘ } (32)

14 D'(¢V)H1(¢v) H(¢v

V. NUMERICAL CALCULATIONS

Before the actual description of the numerical work
of computing |¢3(f) I* and 3, 1¢y,,(¢) 12, the variables em-
ployed in the work will be introduced. These variables
are dimensionless, and correspond to those used in the
computations of Refs, 1—7. They were devised there so
that certain limits could be taken easily—weak-coupling,
infinite-system, etc, —and may seem rather an excres-
cence in this paper. But they are of much help in the
numerical work, by keeping the number of adjustable
parameters in our model to a minimum, and by provid-
ing a notation in which the only appearance of non-real
numbers is in the exponential time-dependence of
[$3(2) 1? and 3, | ¢4;,(#) 1%, Consistency with the notation
of Refs. 1—17 is probably also of some value.

It was remarked in the Introduction that the model
was for a one-dimensional system, but this has not yet
appeared explicitly except in the assumption that there
exists a straightforward ordering in the modes, A, of
the radiation field. Even this was by no means essential
to the subsequent discussion., Now the one-dimensional-
ity will be made explicit. The system will be of length
L, so that w,, the frequency of mode A, equal to clk,],
where ¢ is the speed of light and %, is the wave number
of the mode, will be

wy=cl|k| =2mnc/L, n=1,2,3,7"°. (33)
The various coupling strengths f,, g,, %,, are in gen-
eral of the form (see Ref. 6):

lgx |2 = (aklec/L) glc | Ry | /€3), (34)

where a is a dimensionless coupling constant analogous
in one dimension to the fine-structure constant of quan-
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tum electrodynamics, and g is some dimensionless
function scaled so that g(1)=1 (the argument of g is
unity for that mode which is in resonance with the ener-
gy gap 7gy). If lg, | is defined as in Eq. (34), then the
other couplings can be defined similarly:

27:2
2 a¥fiiec (clkﬂ)
Ih).} - L g &

(since h, =7g,) and

h’ IR, |
as’ilec (c e; ) , (35)

T

where we have used ¢; instead of ¢ so that the require-
ment (1) =1 is sensible and where the new parameter

s measures the relative strengths of f, and g, at their
respective resonances. Next, the time ¢ and the various
frequencies w,, &,, §,, ¢, are made dimensionless by

the definitions
T= a63t7 BA. = wk/aeiiy

36
}/u:.ﬁu/atfz, 6V:§V/a62’ 9K:¢K/a63 ( )

The ratio e;/e; will be denoted by e. The parameter
used for the length of the system is related to L by:

ol =qel/c

Then Eqgs. (34) and (35) become
|&y ]2 = [(ag) e /0] g(aeB,),
| |2 = [s? (et /0*] Flag,).

It is convenient to introduce dimensionless functions
corresponding to H, Hy, and F:

H(agt)= g%—fig—)
H,(agt) = [(2m)?/ae,] H(£),
and
Flaet) = ag, F(E)/2mi
so that
H'(ae ) = (1/278) B (L),
Hi(ae,t) = (2mi/ae)? {(£),
and

F'(aet) = F'(£)/2mi.
Then from Egs. (9) and (15):

AR=2-e-55 —“—i(ﬁaef s) :
ﬁ1(£)=2 1

B O)H(E-7)’
and

3 feb) (37)
B Bt

It can now be seen that the 7, and 6, are the zeros of

H and H1 respectively, and that the functions H Hu

and F are all real for real values of their arguments,

-~ 2
Po=1_r-2

Next, a function D can be defined corresponding to D:
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FIG. 2. The temporal behavior of a three~level atom. The
parameters which characterize the system are ®=0.1,
fl)=x1/% ¢?=1,0, and e=2; in addition, we set s=1.0 and
r=0.5. The solid line describes the evolution of p;(r) while
the dashed line describes the evolution of p,(7). We determine
p3(0)=0.9927 and p,(0)= 0. 0010.

D(aet) = ae; D(E)
and
D'(cegk) =D’ (&)
whence it follows from Eqs. (30) and (31) that

D(g)=F() - §e- terie- m’f—@
and

- v 1 2s? flag,)

D)= -t~ 2 5%

o 1
"% ?’ B (35, —ef)

With all these definitions, then, the equations to be
computed, viz. Egs. (23) and (32), yield
2

(38)

exp(~26,7)

p3(7)= | p5(8) |2 = l? b)) (39)
and
Pz(T)E;|¢2;A(t)lz=—”2{93(7)+2‘; H':”u)
exp(-6,7) 2
x VE b'(6,)B,(eb,) H(eb, ~ v,) } (40)

In the explicit evaluation of these expressions, the f3,,
in accord with Eqs. (33) and (36), are given by

B, = |2mn/0?|

for some nonzero n, and, for example, from Egs. (37)
and (38) (on differentiation of the latter) we have

1
1.0

FIG. 3. The temporal behavior of a three-level atom. The
conventions and parameter specifications are the same as in
Fig. 2, except that here we set s=1,0, »=1.0. In this case,
we determine p;(0)=0.9928 and p,y(0)= 0. 0042.
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F1G. 4. The temporal behavior of a three~level atom. The
conventions and parameter specifications are the same as in
Fig. 2, except that here we set s=1.0, »=2.0, In this case,
we determine p3(0)=0.9927 and p,(0)= 0. 0173,

~ o 1 de = f(2man/o?)
HE =5 -t+ @ L roan

f(2man/o?)
1 (8, - 21n/0¢)

L7 2 1
2 % B{(,)(6,-eb,)"

We remark in passing that, with the above specification
of §,, the eigenfrequencies ¥, will interlace the poles at
(en)2n/0* (1=0,1,2, ), the eigenfrequencies 5, will
interlace the set of terms (v; +v;) (all £, ), and the
eigenfrequencies 6, will interlace the set of terms

{8; (all &), n27/0% (n=0,1,°°°)}. These distributions
provide one with checks useful in the numerical search
for the eigenfrequencies y, 0, and 6.

The expressions (39) and (40) for p;(7) and p,(7) have
been computed numerically for a fairly small value of
the coupling constant, @ =0.1, and for two values of the
length parameter, 02=1.0 and 0 =10.0, The coupling
functions f and g were chosen so that either f(x) = g(x)
=x"V? or f(x) =g(x) =x1/4. These were the coupling
functions most used in Refs. 1—7, and are used here
for no better reason. A variety of values for the other
parameters, ¢, s, ¥, was used, as described later,

As in our earlier work, various checks were per-
formed to assess the reliability of our calculations.
Perhaps the most important of these is the one to deter-
mine whether the conditions imposed formally at 7=0
are satisfied numerically. In the present study, the
initial conditions are: p;(0) =1 and p,(0) = 0. In the cap-~
tions of Figs 2—10, we indicate the values of p4(0) and
p,(0) for the particular cases considered. As a general
conclusion, the initial conditions are reproduced satis-
factorily for all calculations for which the system size
is taken as 0° =1.0; for all cases considered, p;(0) is
effectively 0. 99 with p,(0) usually much smaller than
0.01. On the other hand, the calculation of the initial
probabilities is somewhat less satisfactory for a sys-
tem size taken to be ¢ =10.0; in the present study, we
determine pg(0) =0.9405 and p,(0)=0.0209. The com-
putational difficulty in satisfying numerically the initial
conditions for a system size 0? =10, 0 springs from the
fact that an extraordinary large number of eigenfrequen-
cies v, 8, and @ are required for an accurate determi-
nation of p3(0) and p,(0). We remark in passing that this
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FIG. 5. The temporal behavior of a three-level atom. The
conventions and parameter specifications are the same as in
Fig. 2, except that here we set s=0.5, »=1,0. In this case,
we determine 03(0) = 0. 9980 and p,(0) = 0, 0040,

computational problem is trivial for calculations for
which ¢2=1.0, inasmuch as the number of ¥’s, 6’s

and 6’s needed to achieve a satisfactory result is quite
manageable: Roughly, one needs ~10 y’s, ~10 9’s, and
~20 #’s. When considering 0? =10. 0, however, one
needs 47 ¥’s, 281 &’s, and 300 8’s just to achieve the
value of p3(0) noted above. These difficulties might have
been anticiplated given our earlier calculations on the
Wigner—Weisskopf atom, especially the ones reported
in VII; there, as here, the agreement between the value
of the initial probability computed numerically and the
exact value (for our choice of initial condition), unity,
could be improved only by a further, significant invest-
ment in computer time. For comparison, we note that
the result reported above for p;(0) is slightly better than
the value of p(0) reported in VII, p(0)=0.9353, though
not as good as the value of p(0) computed in IV, 0.9932,

In the first series of figures, Figs. 2—86, ps(7) and
p,(7) are displayed for ¢ =0.1, 0 =1.0, f(x)=x"1?2,
and e =2. This last value of e means that the three
levels of the atom are equally spaced. The choices of
v and s are indicated in the caption of éach figure,
along with the specification of a, 0%, f(x), and e. If one
looks at the three cases where s =1.0 (Figs. 2—4),
then the effect of changing 7, the ratio of the strengths
of the couplings k, and g, (i. e., between states |3)
~ 12) and [2) ~ [1) respectively) can be seen. Increas-
ing 7 appears to lead to more structure both in p, and p3,
or, more precisely, the time scale of their oscillations
decreases. This is no doubt a consequence simply of the
increasing strength of one of the decay mechanisms
from state 13)—a conclusion borne out by the observa-
tion that the probability of occupation of state |2) is
greater for small 7 for greater ». The cases with

FIG. 6. The temporal behavior of a three-level atom. The
conventions and parameter specifications are the same as in
Fig. 2, except that here we set s=2.0, »=1.0. In this case,
we determine p;(0) = 0. 9895 and p,(0) = 0. 0041,
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FIG. 7. The temporal behavior of a three-level atom, The
parameters which characterize the system are o =0.1,
flx)=x1/%, 5=1,0, and e=1,1; here we set s=1,0 and »=1.0.
The solid line describes the evolution of p;(r) while the dashed
line describes the evolution of py(7). We determine p;(0)
=0,9927 and py(0)=0.0048.

r=1.0 (Figs. 5, 3, 6) manifest the effect of changes in
s, the quantity that scales the 13) - [1) transition.
Again, increasing s decreases the time scale of the
oscillations of p; and p,, and this time, as might be
expected, the probability p, (for 7 small) is smaller for
greater s.

The second series of figures, Figs. 7T—8, holds con-
stant =0.1, 0=1.0, f(x)=x""? s=1, =1 and ex-
amines the consequences of changing e¢. Since 7 is
scaled by the frequency €;, one may imagine the energy
gap between [3) and 1) as being fixed, while 12) moves
up near 13) for small e (that is, e only slightly greater
than unity, since e> 1 always) and falls to near 1) with
large e. Figure 3 can also be included in this series.
Since the coupling strengths are fixed here, the time
scales are also roughly constant. In fact, changing e
produces much less striking effects than changing either
r or s, However, it can be seen that the lower the en-
ergy of 12) (large e), the more likely it is to be excited
after the initial decay period, in which, on the con-
trary, the state 1) is more probable, This effect is
rather minor, and in any case in accord with intuition,

Figure 9 keeps the values ¢ =0.1, 02=1.0, e =2,
s=1, =1, and changes the coupling function to f(x)
=x"1/4, This figure is to be compared with Fig. 3, and
it is seen at once that it is not very different. In fact,
it is difficult to point out any systematic differences in
the time evolutions, for either p; or p,. This is rather
fortunate, since as the choice of £ is very much ad hoc
and has no real physical basis, it is comforting to see
that it has only a small effect,

~
1~ =
1.0 20 30 40 50

FIG. 8. The temporal behavior of a three-level atom. The
conventions and parameter specifications are the same as
in the previous figure except that here we set ¢=3,0. We
determine p;(0)=0. 9871 and p,(0)= 0. 0073,
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FIG. 9. The temporal behavior of a three-level atom. The
parameters which characterize the system are @ =0.1,
flx)=x1/4, ¢*=1,0, and e=2.0; also, we set s=1,0 and
r=1.0. The solid line describes the evolution of py(7) while
the dashed line describes the evolution of p,(1). We determine
p3(0)=0.9871 and p,(0) = 0. 0073,

In Fig. 10, the evolution of p; and p, is depicted for
the same values of the parameters as in Fig. 3, except
that now 0% =10. (The 7 axis has been much compressed
here relative to the 0® =1. 0 figures.) The result is as
expected. The atom decays to state (1) much as before,
but now remains there for the longer time required for
the emitted photon or photons to bounce back from the
edges of the “cavity” in which the system is located.
Two times of re-excitation can be seen around 7=10
and 7=20, the second being more diffuse. This effect
becomes more pronounced for large 7, viz. 7=100; by
that time, the order imparted to the system by the
initial condition p4(0) =1. 0 has been dissipated.

Finally, a comparison can be made between the evolu-
tion of a two-level system and our three-level one. The
theory presented in Ref. 4 yields the probability p as a
function of 7 of a two-level atom’s being excited in cir-
cumstances like those of the present model, At first
sight it is not clear whether p; or p;+ p, is a better
quantity from the present model to use in the compari-~
son with p, or given a particular specification of
coupling constant, form factor and system length, which
choices of ¥ and s ensure that the time scales of the two
models are as nearly in accord as possible, However,
from an examination of the structure of Eqs. (39) and
(40), one anticipates that a choice of » and s which em-
phasizes the importance of the transition 13) — [1) at
the expense of the transition !3) — |2} should lead to a
correspondence in the temporal behavior of the two
models.

FIG. 10. The temporal behavior of a three-level atom. The
parameters which characterize the system are ¢ =0.1,
Fl)=x/2 ¢2=10.0, and e=2.0; here we set s=1, 0 and
r=1.0. The solid line describes the evolution of p;3(r) while
the dashed line describes the evolution of py(7). We determine
p5(0)=0,9405 and p,(0) =0, 0209,
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FIG. 11, A comparison of the time evolution of a two-level
atom and a three-level one. The parameters common to the
two quantum systems are a=0.1, fix)=x1/2 and 0?=1.0.

The solid line gives p{(7) vs 7 for a two-level atom as calculated
in Ref. 4. The dotted line gives py(7)+ py(7) vs 7 for a three-
level atom characterized by the parameters e=2.0, s=1.0,

and »=0.1; the dashed line describes py(7)+ p,(7) vs 7 for the
same three-level system but setting »=1.0,

In Fig. 11 we display for @ =0.1, f(x)=x""?, and
0% =1.0 the temporal evolution of the probabilities p
(solid line) and p3 + p, (dotted line), the latter calculated
for the choice s =1.0, »=0.1; it is seen that the two
probabilities are in nearly exact correspondence. On
the other hand, if for the same choice of &, f(x), and
o? one takes s=1,0, »=1.0, the correspondence be-
tween the two probabilities, p (solid line) and py + p,
(dashed line), deteriorates, especially for times great-
er than 7~ 1.5, It should also be noted that for this
latter choice of 7, s the probabilities p and p;, or p
and p,, are in even less good agreement than the proba-
bilities p and p; +p,, as may be seen by comparing
Figs. 3 and 11.

If one performs calculations of p and p; +p, for
s=1.0, r=1,0, but for a system characterized by a
reduced length 02 =10. 0 (keeping @ = 0.1 and f(x) =x"/?
fixed), one finds that the similarity in the temporal
evolution of the two-level atom and the three-level one
persists for times considerably longer than that noted
in Fig. 11. In Fig. 12 we have plotted the time develop-
ment of the probabilities p and p; +p, for this set of

0.00
1050 110.0 5.0

bt
250

FIG. 12. A comparison of the time evolution of a two-level
atom and a three-level one. The parameters common to the
two quantum systems are o =0.1, fix)=x"1/2, and ¢*=10,0.
The solid line gives p(1) vs 7 for a two-level atom as calculat-
ed in Ref. 4. The dashed line gives p;(7) + p,(1) vs 7 for a
three-~level atom characterized by the parameters e=2. 0,
s=1.0, and =1, 0, The insert displays the evolution of the
two models at a later time 7.
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parameters, and it is seen that there is a marked cor-
respondence in the two probabilities over the range of

7 considered, 0.0 <7<25.0. As shown in the insert,
this correspondence deteriorates eventually as the sys-
tem evolves in time, this due to the dissipation of the
initial condition [respectively, p{0)=1.0 and p;(0)=1. 0],
a property noted in a previous paragraph.

That the evolution of the two-level and three-level
system can be brought into nearly exact correspondence
for some choices of », s is not particularly astonishing
given the structure of Egs. (39) and (40). What seems
more remarkable is that this correspondence can be
achieved for 6 =1, 0 for a coupling constant character-
izing the transition 13) — 12) only a factor of one-tenth
that characterizing the transition [3) — [1). Increasing
the strength of the coupling constant monitoring the
transition 13) — 12) enhances, of course, the importance
of the second decay channel open to the three-level sys-
tem of our model. Indeed, for 0?=1, 0 when the transi-
tions 13) — 1) and |3) — 12) are placed on an equal foot-
ing (s=1.0, r=1,0), the two models exhibit noticeable,
quantitative differences for times 7> 1.5. These differ-
ences are less pronounced for 0° =10. 0, at least initial-
ly, since the larger system size allows the emitted pho-
tons to be “away” from the atom for a longer period of
time, thus decreasing the probability of immediate re-
excitation of the atom,

VI. DISCUSSION

The chief aim of this paper has been to present the
exact solution to a highly stylized problem in the theory
of radiation. It is worth insisting on the point that no
particular experimental setup has been in mind in the
elaboration of the solution, and that consequently the
model has no claim, in its present form, to being a
paradigm for a specific radiative event. But it seemed
important to show that the model was soluble and to give
an indication of the sort of behavior it could describe.
A considerable number of complications could be in-
corporated in similar models, which would also be solu-
ble. Spin and three space dimensions have already been
mentioned in this connection. It should by now be clear
that the methods of this paper are rather general, and
s0 models of quite rich structure should be tractable
with their use. Again, since what has been presented
here is essentially an exercise in formal quantum
mechanics, there is no need to restrict attention to
problems involving radiation, Radiationless transitions
in aromatic molecules, processes with phonons in
solids, and so forth, may well throw up problems simi-
lar to that treated here, in addition to the more obvious
ones dealing with the phenomena of phosphorescence,
fluorescence and such things in atomic and molecular
physics.

The treatment of our system as one finite in extent
as well as one-dimensional is especially unrealistic
from the point of view of radiation theory, where the
spectrum is always thought of as continuous rather than
discrete. There are two ways in which an infinite sys-
tem can be considered. One may simply take the results
presented here and let o? tend to infinity, This pro-
cedure is rather involved, but it is certainly possible:
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The results are currently being studied. Alternatively,
one may formulate a new problem with a Hamiltonian
which already has a continuous spectrum. If this is
done, the calculations displayed in this paper are re-
placed by others heavily dependent on the theory of
Cauchy integrals (see Ref. 8) rather than on the Mittag—
Leffler theorem.

Although it has not been demonstrated in the compu-
tations reported here, the influence of the coupling
constant, a, on the quantities p4(7) and py(7) is not very
great for small a. These quantities are not in fact
analytic in a at o =0 (this matter has been extensively
discussed in Refs. 1~7), but even so their limits as
a —~0 are well defined, and do not differ markedly from
the results given here for @ =0.1, especially for o*
somewhat greater than unity. This claim is borne out
in detail for a two-level system in IV. Of course, the
variable 7 involves « in its definition, so that these re-
marks do not imply the absurd conclusion that an atom
decays from an excited state just as fast if the decay
mode is characterized by a weak or a strong coupling
to the ground state. It is simply that, once time has
been scaled by the coupling constant &, a has little
further influence on the evolution of our system.

One obvious increase in the generality of the model,
even in its finite-system, one-dimensional form, would
be obtained by removing the restriction imposed in Sec.
IV that %, =7g,, and the one imposed in Sec. V that
Flx) =g(x). Clearly atomic and molecular transitions
are characterized by an electromagnetic multipolarity,
as well as spin and parity considerations, and if these
are taken into account, the restrictive assumptions can-
not be expected to hold. But there is no great difficulty
in removing them: The computations merely become
more complicated.

Finally, on a more positive note, it is not too far-
fetched a claim that the model as it stands in this paper
provides an interesting description of a system with two
quite different decay modes open to it. The qualitatively
sensible results obtained in Sec. V as the parameters
7 and s are allowed to vary lead one to hope that more
complex models of this kind will yield a more detailed
description of systems with competing decay channels
than has yet been achieved.

APPENDIX

In this appendix a solution will be found for Eq. (12)
in the text. The equation is

H(z -~ w,) Res, X +X(z - w,) Res, H= - g(2)/(2n0), (A1)

where z is a parameter. If one considers the function
F(£)=H(z - £) X(£) + X(z - £) H(E) (A2)

of the complex variable £, then one sees that F is
meromorphic, and that it has poles where £ =w, and
£ =2z - w,. The residues are as follows:

Reswa——-H(z -w,) Res, X +X(z - £) Res, H,
Res,., F=- [X(z - w,) Res, H +H(z ~ w,) Res,, H].

(A3)
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These poles are the only singularities of the function F,
which is also finite (or possibly even zero) at infinity.
This last remark holds provided ¢,,, is indeed an ad-
missible solution of Eq. (Al) in the sense that 3, |¢,,, |*
is finite, Then F can be expressed in terms of its
residues as follows:

P =3 el o Bl o)

by the Mittag—Lefﬂer theorem (see Ref. 9). Here c(z)
is just the value of F at infinity, Now by Egs. (Al) and
(A3), this expression for F is

&) &\z)
F(g)= (21rz) (Lx’ - £+? w,_—h(z—f;'))+c(z)

=G(£)+G(z—£)+C(Z), (a4)

say, where the new meromorphic function G is defined
by

G(e) = WZ} gi‘zg (A5)

1If the result (A4) is put into Eq. (A2) one obtains
Xz - £)= 7 H(E (G(8) + Gtz ~ £) + c(2) - Hiz - ) X(£)].

(A6)

Now the only poles of X(z ~ £) are where £ =2z — w,, and
so this must be true also of the right-hand side of Eq.
{A6). The function H(£) has a set of simple zeros at
points £=§¢,, say, which interlace its poles at £ = w,.
(This is an easy consequence of the definition of H, and
is shown in detail in Paper IV of the series.) Thus
1/H(£) has simple poles at £ =¢t,, with residues 1/H’(E,)
(the prime denotes differentiation). But, although the
terms on the right-hand side of Eq. (A6) are separately
singular at £ =§,, this is not so for their sum, and so
the separate residues must sum to zero. That is,

Glt,) | Glz—-£,) c{z) (X)

—+ - - =) =0,
7)) T HE) T, THE I Resy (g
The function X/H is meromorphic with poles only
where £=§, (at £ =w,, both numerator and denominator
vanish, and the ratio is regular) and it vanishes at in-
finity. The Mittag—Leffler theorem yields

1 G(E,)+ Gz —§,) +clz)
. H'(£,)H(z - £,) '

)+

X(£)=H(£) ? (AT)

The quantity ¢(z) is all that remains to be determined.
Since the function X vanishes at infinity, it too has a
Mittag— Leffler expansion:

X®)=2 Res“’wh (A8)

From Eq. (A7),

G(E)+Glz—§,) +c(z)
(0= EJH'(E)H(z-£,)°

whence from Eq. {(A8)

Res, X =Res, H ; (A9)
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Resu,H G(E,)+G(z~-£,)+c(2)
X(t) = Z; A @ 3 .
X -w Wy, ~ H' H(z -
E-w, W (0 ~-E)H'(E)H(z-E,) (A10)
Now
ResM,H
2 A R
_ 1 Resu,H E Res%H)
E-£, (ZP £-w, £u—wy
But the Mittag~Leffler expansion of H is
_ 1 ResuwH
HE) = 274 6= 8)+2s £~ w,
(the behavior at infinity is important here), and so
» Resw,H H(§) + 1

E-w)loy-&)  E-¢,  2m

since H(,) =0 by definition. When this is put into Eq.
(A10) and the result compared with Eq. (A7), an equa-
tion for ¢(z) is obtained:

 GE )+ Glz—§,) Felz)
Zﬁ H'(E)H(z-E,) =0

so that

clz)== (A11)

1 ) G(E,) + Glz - £,)
Hi(z) s H'(EM)H(Z - Eu) ’

where the function H, is given by

1
Hye) =2 H(ENHEZ-E,) "

The desired solution to our problem is obtained by sub-
stituting Eq. (A11) into Eq. (A9):

1 1
“EG) ¥ e  FEIAGSE)

Res, X= ReswAH .

G(E,) = GlE) + Gla ~ £,) = Glz = £)
2 H'(E)H(z - £) '

(A12)
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Fredholm determinants and multiple solitons*

K. M. Case

The Rockefeller University, New York, New York 10021
(Received 29 March 1976)

The discrete inverse scattering problem in one dimension is considered. Exact solutions are obtained using
elementary algebraic tools. Expressions found involve determinants of infinite-dimensional matrices. A
simple, heuristic, limiting process yields the solution for the continuous problem. When the reflection
coefficients do not contribute (the general N soliton case), the determinants reduce to those of given NX N

matrices.

. INTRODUCTION

In the last few years there has been considerable in-
terest in the Gel’fand— Levitan' and Marchenko? equa-
tions. Part of the reason is the role they play in the re-
markable inverse scattering transform method of solving
nonlinear partial differential® and partial difference?
equations.

We have two remarks:

(1) It is noted in the literatiure® that in the continuum
case (appropriate for partial differential equations) the
relevant part of the solutions of these equations are neat-
ly expressed in Fredholm determinants.

(2) Solutions of the Gel'fand— Levitan or Marchenko
equations leading to pure N soliton solutions of the re-
lated nonlinear evolution equations are simply written
in terms of N XN determinants. *"*

Here we consider the solution of the Marchenko equa-
tion relevant to the discrete inverse scattering problem.
It is shown that the most important quantities are di-
rectly expressible in rather simple Fredholm determi-
nants. Besides being useful, the result is of pedagogical
interest in that it shows quite clearly how these deter-
minants arise. Finally we show that these (infinite)
Fredholm determinants reduce to NXN determinants in
the case of pure N soliton solutions,

To be specific the discrete inverse scattering problem
in one dimension is discussed. (This has perhaps the
most general interest since the conclusions will pertain
to both the Toda lattice and the Korteweg—de Vries equa-
tion.) However, it should be emphasized that essentially
identical results hold for the discrete inverse scattering
problem on the half-line treated either by the Gel’fand—
Levitan or Marchenko approach.

Il. THE FREDHOLM DETERMINANT SOLUTION

We refer to Refs. 6 and 7 for background and deriva-
tions. Briefly stated, the problem is as follows: For the
eigenvalue problem

aln + )X, 1+ 1) +a(m(r, n = 1) = XP(r, n) (1)

we are to determine the «(n), or better, the potential
o(n) such that

a(n) =5 exp{-[v(n) +v(n-1)]/2},
r(n) = A%g(na).

(22)
(2b)
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It is assumed that the reflection coefficient (S, (})),
the position of the bound states (};) and the bound state
normalization constants C? are given.

The solution procedure that has been described is:
Consider the comparison equation

ay(n+ DP(x, n+1) +a(mi(r, n- 1) = AP, n), (3)

with known coefficients ay(n). Define solutions of Egs. (1)
and (3) such that

Hm 76, -2, (4)
where A= (z +z1)/2,
Then we have the representation
)= 22 Aln, m)f (X, m), (5)
and the solution for a(n) is
an)/a(n)y=A(n,n)/An-1,n-1). (6)

The A is to be obtained so: Let?

N
w(m, 1) :E C%fuo\n 7”)fo(}‘i, )]
i=1

+f§£175—2[521(”-521(l)]f‘)(>\, m) D, ()

and
a(n,l)=A(n, l)//A(n, 7). (8)
Then
aln, 1) +wln, )+ 75 aln, m)wlm, )=0, 1>n, (9)
m=n+1
and
1—1+()+Z‘Z(,,) ) 10
At w(n, n mwla 1, nwln, n). (10)

Using Cramer’s rule, we can readily write down the
solution for a(xn, »). Thus

aln, m)= l \711/det[1 +wln,. (11)
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Here explicitly

det{1 +w|z, =

and | |,, is the same as this except that the mth column is replaced by -~ w(n, n+1), ~

1+wm+1,nt+1)
wm+2,n+1)

wn+3,n+1)

Thus, as examples,

—wi,nt1) wh+l,r+2) w(n+1,n+3)
—w,n+2) 1+twmn+2,2+2) wh+2, 1n+3)

[ | | -wm,n+t3) wm+3,nt2) 1+twn+3,n+3) .

n+l T

1+wmr+l,n+1) -~whm,ntl) wh+l,n+3)
whrt2,n+1) —wlm,n+2) wrt2,n+3)
wn+3,nrnt1l) ~wn,n+3) 1+wn+3,n+3)

l !mz:

and

1+wmr+1,n+1) wh+,n+2) -—-wh,ntl)
wln+3,n+1) w{n+3,n+2) —wli,n+3)

‘ 3 T

Using Eq. (11) in Eq.

1
n, N

Now consider

det{1 +wl]¥=

f\ | llw([ H)
+ )+
P R N s

whr+1,n+2)
1+wmn+2,n+2)

wn+3,n+2)

(10) we see that

[1+w(e,n)ldetfl +w)s, +

wh+1,12+3)

wl +2,n+3)

1+wrn+3,1n+3).

ul m+1l Ilw(l ”)

det[1+ 0wl

1+ w(n, u)
wl+1, )
w(n+2,n)

w(n+ 3, n)

wli, n+1)
1+whn+1,nt+1)
wln+2,n+1)

wln+3,12+1)
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w(, n+ 2}
wh+1,n+2)
1twmn+2,n+2)

wn+3,n+2)

wn, n+3)
wi+1,n+3)

w(z+2,n+3)

1+wmn+3,n+t3).

K.M. Case
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, =wl,n+3), -

(13)

(14)

1704



If we expand this in minors of the first row the first
term is

[1+win, n)]det(1+wly,y, (18)

the second is

wint1, 7] |, (19
and the third is

wn+2,2)| | (20)
In general, the mth term is

(n,n+m)| |n+m. (21)

Comparing these with Eq. (16) we see that
A¥(n, n) = det[1 + w]y; /det]1 + ;. (22)

Finally, from this and Eq. (6) we obtain the following
general result for this discrete inverse scattering
problem:

1/2
a(n) _ (det[l +wlr, det[1+ w]:.x> (23)
ay(n) {det[1+ w]}?
Hil. THE CONTINUOUS LIMIT
A heuristic derivation of the continuous form of Eq.
(23) is obtained following the approach given in Refs.
(6) and (7). In essence we replace all discrete indices
n,m,++- by na, ma4,--- and then pass to the limits

n,m, - =~ A=0with na=x, ma=y, .. finite. Thus
from Egs. (2) we have

. 1In [a(n) 2
Q(x)—qo(x)—ilfgl—ﬁxz [m ] )

A (na, ns)]
A[(m-1)4, (n-1)A]"

na=x,

(24)

11
=lim-5-3In
aey 24%

The Marchenko equations (9) become for small 4,

a(na, 1a) + sw' (A, LA) + A 25 alnd, mA)w' (ma, 1a)
m=n+l
=0, (25)

where w’(n4,18) ~w'(x,v) as A—~0, nd~x, [A~y. Ex-
plicitly, for the case of no bound states

w'(x,.v)zzi,, f [S13() = S15(R) Vo, 9)f ok, 9) dle. (26)

Here Sf3’, Si5(k) are the reflection coefficients for the
Schrodinger equation with potentials g, and g respec-
tively. fy(k, x) is the solution with potential ¢, which goes
as exp(tkx) as x ==,

From Eq. (25) we see that as A~ 0, a(na,la)
—~aa’(x,y) and thus Eq. (25) becomes the Marchenko
integral equation

a'(x,v) +w'(x,y) + f; a'(x, hw'(t, y) dt=0. 27

Correspondingly the determinants

det{1+ w]® ~det[1+ '], (28)
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where the latter is a Fredholm determinant with kernel
w’(x,v), defined for x <y <o, (29)

[The limit is particularly clear when the determinants
are expressed in terms of traces as described in Eq.
(36) given later. ]

Now from Eq. (24) we have

2
a() = qo¥) =~ 555 ln—er [1nA na] 4]
1 I {Af(n-1)4, (n- 1)a]+ a(3/3x)A%x, x)}
~arh A(n=-15, n-1DA]

~ 1 d 2
~-5aln 1 +85—1nd (x, x)]

1 3
T 24 ax

InA2(x, x), (30)

but, from Eq. (22},
det{1+ w]5, _detll + w]7 + A(3/0x)det[1+ w']7

2 —
AXnd, n8) = T detll tw Ty
or
Ax(r, ) 21+ a2 (1 +0)r (31)

Inserting this result in Eq. (30), expanding the logarithm
for small A and then passing to the limit A -0 yields the
desired result,

00 = g0 == 2y Indetl1 +07)7, (32)

IV. THE PURE N-SOLITON CASE
By the term pure N-soliton case we mean the problem
when in Eq. (7) the terms involving the reflection co-
efficients vanish identically, i.e.,
¥
wm, 1) =25 G fo(x;, m)fy(A;, D). (33)
i=1
1t is clear on locking at Eqs. (9) and (10) in this case
that the a(n, ) can be expressed in terms of the ratios
of determinants of NXN matrices. What is perhaps not

s0 obvious is that the determlnants det[1+ wly whose
ratios determine the A(n, #) are individually expressible
in terms of the determinants of N XN matrices.

The theorem we wish to demonstrate is that if w(m, )
is as given by Eq. (33), then

det{1+ w]’=det[1 +R,], (39)

where R, is the N XN matrix with elements
(R j1,12=C1C 120 Fol Ry, M) fio Mgz, m). (35)
m=n
A simple, if not necessarily the most elegant, proof

is obtained by noting that

© 1+1
det{1+A]l=exptrin[l +Al=ex 2 (= 1)

trA?.  (36)

The proof of Eq. (34) is obtained by showing that
tro' | P=tr(R,), 1=1,2,""", (37)
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tro’ ‘ "= )i /fl { h
1yi2eeodt my mpeesmy
1 n
with
{h =fo(A1, M1y) FolRyy, 125)
*FoRyzy M) o(Agq, g)
*FolXjay Ma)fo(Ayq, 12y)

So(gra, My )N, B17)
Foe, m)fo(y, 1), (38)
while

oo

wEr= B L
i1,§200051 m{ myocom]
1 n
where
{ Yo =Fohty MmO foNg2n 21)
* FolXya, nz;)fo()\js, "72’)
“Fo(Rgay Mg)fo( g, 23)

'fo(xn-p mt'-1)fo(>‘ju "1;-1)
fos my) e my). (39)
Relable Eq. (39) so that
1 1 ! ?
WMy =my, My=W,, Wy=My-o+, Wy =ml,
Then shift the entries in { }, such that:
(a) The lower right f; is put in the top left position.
{b) All others:

(i) If in the left hand column, movei to the right.
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(ii) If in the right hand column, move one down
and one to the left.

We immediately see that the right-hand sides of Eq. (38)
and Eq. (39) are equal. This proves Eg. (37) and thus
Eq. (34).

V. CONCLUSION

We have considered the discrete inverse scattering
problem in one dimension. The exact solution (for the
quantities of interest) are obtained using elementary
algebra. The expressions are in terms certain infinite
dimensional determinants. The solution of the continuous
inverse scattering problem is obtained by a simple, if
heuristic, limiting procedure. When the reflection co-
efficients do not contribute (the general N soliton case)
the determinants reduce to those of given N XN matrices.

It is to be emphasized again that essentially identical
results for the inverse problem on the half-line can be
obtained for either the Gelfand’— Levitan or Marchenko
formulation—using exactly the same method.

*Supported in part by the United States Air Force, Grant No.
AFOSR 72-2187.
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Derivation of an exact spectral density transport equation
for a nonstationary scattering medium
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Within the framework of the quasioptical description and the pure Markovian random process
approximation, an exact kinetic equation is derived for the spectral density function in the case of wave
propagation in a nondispersive medium characterized by large-scale space-time fluctuations. Also, a
quantity, called the degree of coherence function, is defined as a quantitative measure of the irreversible

effects of randomness.

1. INTRODUCTION

Investigations of electromagnetic wave propagation in
nonstationary random media are often based on the equa-
tions of classical radiation transport theory, the usual
derivation'? of which is based on considerations of ener-
gy balance, with no explicit “microscopic” interpreta-
tion given to the extinction and scattering coefficients
entering into these equations. Moreover, use is fre-
quently made of the random phase approximation which
is valid only for incoherent waves (such as stellar radi-
ation). Extensions to this approach introduced by
Bugnolo, ? Stott,* and Peacher and Watson® are appli-
cable to partially coherent waves and account for multi-
ple scattering effects.

In the past few years, primarily in connection with
laser propagation, there has been considerable interest
in the investigation of the transformation of the wave
spectrum in media characterized by large-scale space—
time random fluctuations. Recently reported studies
along this direction®7 are confined to the quasistatic
approximation, with the time dependence of the index of
refraction entering parametrically, mostly via a con-
stant or a variable (in the direction of propagation)
transverse wind. Furthermore, authors who base their
work on radiation transport theory often use uncritically
the basic equations of Bugnolo and Peacher and Watson,

It is the intent in this paper to lift several of the
aforementioned restrictions and systematically derive
an exact spectral density kinetic equation for wave
propagation in a nondispersive medium having large-
scale space—time random fluctuations within the frame-
work of the quasioptical description and the pure
Markovian random process approximation.

2. THE QUASIOPTICAL DESCRIPTION

Ignoring depolarization effects, time-dependent elec-
tromagnetic wave propagation in a nondispersive medi-
um with random space—time fluctuations of the refrac-
tive index is governed by the stochastic scalar wave
equation,

1 2
VT, 1) -y 6 (r, t)%[u(r,tho. (2.1)
Here, c¢ is the velocity of light in vacuo, €/(r,t) is the
relative permittivity which is assumed to be a real ran-
dom function of space and time, and u(r,t) is a scalar,
real, random amplitude function.

1707 Journal of Mathematical Physics, Vol. 17, No. 9, September 1976

For plane- or beam-wave propagation in the z direc-
tion, it is convenient to resort to the transformation

u(r, t) =9(r, t) explik(z -~ vt)] +c.c., (2.2)

where k=w,/v, v=c/{(r, )H’?, and w, is a reference
(carrier) frequency. The ensemble average of the ran-
dom relative permittivity, viz., (e(r,#)), is assumed
to be constant,

In the quasioptical description, the slowly varying
complex random amplitude function ¥(r,¢) obeys the non-
stationary stochastic parabolic equation®

_1'.(_3_ +_1_ i)(p(x’t;g):—-z—lzz Vizp(x, t;Z)

k\dz vt
-ze, 52) ¥, t2), 220, (2.3)
where X = (x,y) and
e (%, 8;2) =[e,(x,1;2) = {e,(x, £;2)))/ (e, (X, £;2))  (2.4)

is the normalized fluctuating part of the random relative
permittivity. Equation (2. 3) is rendered closed by speci-
fying the boundary condition (x, ¢; 0) = i,(x, ).

3. THE SPECTRAL DENSITY

A two- (transverse) point, two-time field density func-
tion is next introduced as follows in terms of the
wavefunction:

P(Xp, Xy, g, £ 2) =¥ (X, £y52) P(Xy, £45 2). 3.1)
It obeys the equation
i 0
% 92 p{Xy, Xy, £y, 845 2)

[ilf2, o\ 1o, 1
= [‘ E v (at1 + at2> BT ACRE ALY
"561("1,%52)+%€1(x2,t252)]9(x2,x1,tz,tﬁz), z=0,
(3.2a)
p(Xy, Xy, By, 145 0) = po(Xy, Xy, £y, £1). (3.2b)

The “phase-space” analog of the density function is
provided by the field spectral density which is defined
as follows:

k\3 .
f(x,p,t,w;z)=(2—1;)/ dY/ dr explik(p -y - w7)]
R2 rl

Xp(x+3y,X~3y,t+3T,t—37;2). (3.3)
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This quantity is real, but not necessarily positive
everywhere. ® It will be shown, however, later on in

the exposition, that appropriate moments of the spectral
density are physical observables.

Using the definition of f(X, p,,w;2) in conjunction
with (3.1) and (2. 3), it is found that the spectral density
evolves according to the equation

7
—a-z—f(x,p,t,w;z):Lf(x,p,t,w;z), z=0, (3.4{1)
f&,p,t,w;0)=£,(x,p,t,w), (3. 4b)
L%, t,w32) =— (2 2 1 p L) fix, p, 1,05 2)
P TIE T\ ot ax )/ TR
+ 0f(x,p, L, w;z). (3.4¢)

The following representation of the permittivity-depen-
dent term on the right-hand side of (3. 4c) will prove
useful in the sequel'®:

0f(x, p, t,w;z) :(%)n1 (%51)-3/;2 dy’/}-21 dr explik(p.y — w)]

Xp(X+3y,X~ 3Y,t +37,t=37;2)

X[ze(x +3y,t +37;2) - 36 (x -3y, -37;2)].  (3.5)

4. SPECTRAL DENSITY TRANSPORT EQUATION
IN THE PURE MARKOVIAN RANDOM PROCESS
APPROXIMATION

We consider in this section a statistical analysis of
the stochastic equation (3.4). Specifically, we shall
derive an exact kinetic equation for the mean spectral
density {(f(x,p, ¢, w;z)) in the pure Markovian random
process approximation,

Averaging both sides of (3.1) yields

g 1 3
(5%57

6<f(x,p,t,w;z»:(—;;).1 (gkiy:lzdyfm ar

Xexplik(p oy — wT){p(x + 3y, X~ 3y, + 27,1~ 37;2)
(4.1b)

d
+p°&)(f(x,p;t;w;Z»:e<f(x7p)t)w;zii’1 )
. la

X{3e(x+3y,¢+57;2) - se(x = 3,1 = 27;2)]).

We assume that ¢(x,%;2) is a & correlated (in z), homo-
geneous, wide-sense stationary Gaussian process
specified completely by the correlation function

(e1(xy, 233 25) €Ky, 115 21))

2
:—kT—Ty(xz-xb ty=1)6(zy=24). (4.2)

Then, on the basis of the Furutsu—Novikov!!'!? func-
tional formalism, we have

(p(Xy, Xy, ty, 115 2) €1 (Ko, 195 2) — €1 (X1, 14, z]

=f dxy dxf/ dté/ dty‘ dz' ([ &%y, 193 2)
g2 Rr2 Rl 3! r!
—e (i, ti52)) [eg(x3, 855 27) = e (%], £1; 2 7))

X<Op(x27xist2a t1;z)/6[€1(x'2’té;zl) —51(X{, t{;Z’)D
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x(P(xz,xutz,tﬁZ»- (4-3)
[The symbol 5(-) denotes a functional derivative. ] The
last equality follows readily from the eguation of evolu-
tion of the density function [cf. (3.2)] and an extension of
the procedure followed by Tatarskii'® in connection with
the time-independent stochastic parabolic equation.

Using the coordinate transformation Xy, =X +3y, 5,
~¢+37 in (4.3) and introducing the result into the sta-
tistically averaged equation (4.1), we obtain

(—a—+1 4 iped )<f(x,p,t,w;z>>

3z v ot 3%

:(ﬂé@) (_2%) IZ dy_/;el dr explik(p e y — wT)][7(y,7)

-70,0)]{pR+3y,Xx~3y, t +37, t=37;2)).  (4.4)

This equation simplifies considerably upon introducing
the spectrum of the space—time correlation function,
viz.,

~ L\3 .
7(p,w):(—~2 )f dy [  drexp[-ik(p-y-uT)]y(y,T),
7)) g2 &1

(4.5a)
Yy, T) = j;ez dp fR1 dw explik(p -y - wT)y(p,w). (4.5b)
Bearing in mind the definition of the spectral density

[cf. (3.3)], (4.4) changes to the simple, convolution-
type transport equation

(_a_+1_a_ J 7k
9z

vt Pty
k ’ I3y ’ ’ ’ ',
:——f dpf dw' Y=, w-w") (flx, P, 1,05 2)).
2 Jgr? &l
(4.6)

y<o,0)) (F%, By 1, 1032)

It follows from (4, 5b) that

7(0,0)= [ ,dp [ dw(p,w). .7)
The spectrum y(p,w), however, is real, nonnegative,
and even in both arguments. By virtue of the last prop-
erty, it is seen that

¥0,0)= [ ,dp’ [ dw’yp -9’1 -w0’), (4.8)
and Eq. (4.6) can be recast into the form
2.1 2 ,
(42 2w ) rtmp s
:/ dp"/' dw' W(p,p’,w,w’)
R? &l
x[(f&, ', t,0752) = fx, p, 8,05 2))], (4.9a)
’ ’ TR ~ ’ ’
W(p’p y w,w ):—2—7(9—13 yWw—uw )- (4-9b)

This expression has the form of a radiation transport
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equation, [More precisely, if (4.9a) is integrated over
w, it becomes a Boltzmann equation for waves (quasi-
particles in phase space). ] It extends the kinetic equa-
tion reported by Klyatskin and Tatarskii!® in connection
with the stationary stochastic parabolic equation, and,
in the quasistatic case, it provides a rigorous basis for
the work of Fante (cf. Ref. 7).

From what was said earlier about ¥(p,w), it follows
that the fransition probability (or scattering indicatrix)
Wip, p’,w,w’) is real, nonnegative, and obeys the {(de-
tailed balance) property W(p’, p,w’,w) =W, p’,w,w’).
The scattering rate (also called the extinction coefficient
or collision frequency) is defined in general by

v(p,w)= [ ,dp’ [  dw'W,p’,w,w). (4.10)
In the case under consideration here, the scattering
rate is independent of p and w and is given by

v =(1k/2) (0, 0). (4,11)

5. PHYSICAL OBSERVABLES

Having established an expression for the mean spec-
tral density by solving the kinetic equation (4.9), the
following physically meaningful averaged quantities can
be obtained by straightforward integration: (i) the mutual
space—time coherence {p(x+3y, X3y, t +37, t - 37;2))
=[dp [ dw exp[- ik(p-y - wT) K f(X,p,¢,;2)); (ii) the
mean intensity density (¥*{(x, ¢; z)p(x, t;2)) = [dp [ dw
x{f(x,p,t,w;z); (iii) the intensity density in momentum
space (p(p, p,w,w;z)) = [ dp [ dt{f(x,p, !, w;2)), where
p,p,w,w;z) is the momentum representation of the in-
tensity density; (iv) the mean intensity flux density
(J(x,t;2)) = dp [ dwp(f(x,p,t,w;2)), where J(x,t;2)
= (i/2R)[(V*)d — v*(V)] is the intensity fiux density.
Furthermore, denoting the total mean intensity, viz.,
Jax{y*(x, t;2)y(x, £;2)) by I(t;2), the following two aver-
aged quantities are important in connection with the
propagation of spatially bounded beams: (i) the mean
“center of gravity” of the beam x,(;z) =[[dp [ dw [ dxx
X{ f(x,p,t,w;2))]/I{t;z); (ii) spread of a beam 30%(t; z)
=[ fdp -‘.dw jdx(x— xc)2<f(x, p, t,w;z))]/l(t; Z)-

6. CONSERVATION OF THE MEAN INTENSITY;
DEGREE OF COHERENCE

By virtue of the self-adjointness of the operator
i 9 1
H(';; e t"z>='ﬁfv

appearing on the right-hand side of (2.3), the intensity
density function |¥(x,?;z)!? obeys the conservation law!®

i-ze(x,42)

(a = at)lzp(xtz)|2+v J(x,t;2)=0,

0z (6.1)

where J{x,¢;z} is the intensity flux density (cf. previous
section).

It was pointed out in the previous section that
(19(x,t;2)1%) = [dp[dw { f(x, p,?,w;z)} and (J(x,#;2))
=[dp [ dwp{fx,p,t,w;2z)). Bearing in mind these re-
lationships and integrating both sides of (4. 9) over p
and w results in the following conservation law for the
mean intensity:
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(a )<l¢(x,t,z)|2>+v (J(x,t;2))=0.  (6.2)

9z v ot
Integration of this equation over the entire transverse
observation plane yields the relation

<:z v at)[f dx{|p(x,z)|%]=0

The quantity D(x, p,#,w;2) ={f(X,p,t,w;z))* is defined
next as the phase-space degvee of coherence density,
Integrating this quantity over p- and w-space we obtain
the configuration-space degree of cohevence density
d(x,t;z)=[dp[dwD(x,p,t,w;z). Both sides of this last
relation are operated on next with [3/9z + (1/v)(2/31)]
and use is made of the transport equation (4. 9):

(6.3)

g 1 90
<a—z+v at)d(x t;z) + V. K(x,t;2)

-_—Zf dp-/. dp:/‘ duf dw' W(p,p’ ,w,w’)
R? R2 r! Rl

x[(fx, 0,2, w';2)) (fx,p,¢,w;2))

- {fix,p,t,w;2))], (6.4)

where

K(x,t;z):fdepfkidwpD(x,p,t,w;z) (6.5)

is the configuration-space degree of cohevence flux.

The right-hand side of (6.4) can be rewritten in the
more useful form

- fdeP fdeP’ fmdw fRidW’W(p, pw,w’)

X[(fx,p,t,w;2)) - {f(x, P, t,w; 2 <0 (6.6)
on using the following two properties of the transition
probability: (i) W(p’,p,w’,w)=W(p,p’,w,w’) (detailed
balance); (ii) W(p,p’,w, w’) > 0 (nonnegativity). Using,
then, (6.6) in conjunction with (6. 4), it is seen that

( 4 -i—1 a) dix,t;z) + 9, K(x,t;2) < 0.

9z v ot 6.7)

Integrating this relation over X results in the inequality

( 9 +5 at)[/ dxd(x,t;z)

which exhibits the monotonic decrease of the total de-
gree of coherence as it is convected along the z direc-
tion with the constant velocity v.

{6.8)

It should be noted that inequality (6. 8) is analogous
to Boltzmann’s H theorem is statistical mechanics. In
the latter case, the configuration -space degree of co-
herence density (related to the entropy) would be de-
fined as d(x,t,z) =~ [dp [dw {f)In{f). It has been
pointed out, however, that {f) can assume negative
values; hence, the need for the alternative approach
presented in this section,

7. CONCLUDING REMARKS

The transport equation for the spectral density de-
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rived in Sec. 4 is an integrodifferential equation of the
convolution type which can be integrated formally, i.e.,
(f(x,p,{,w;z)) can be expressed in terms of the initial
distribution { f(x, p, {,2;0)), by a technique analogous

to that suggested by Dolin'® in the case of a stationary
scattering medium. This formal solution can then be
examined for specific fluctuation spectra (cf. Refs. 17
and 18), in particular, those arising from a constant or
a space-dependent (in the z direction) transverse wind
(cf. Refs. 6 and 7). It should be noted, however, that
the formulation presented in this paper is general
enough, and it allows also the investigation of stochastic
wave propagation in a space—time-dependent medium to
and from moving sources. The latter subject has been
recently examined by Strobehn!® who used a quasistatic
approximation and Rytov’s method of smooth
perturbations.

The discussion in this paper is confined to the mean
spectral density, or, equivalently, to the space—time
mutual coherence (cf. Sec. 5). This work, however,
can be extended in several directions. For example,
within the quasioptical assumption and the pure Mark-
ovian random process approximation, one can examine
longitudinal (in the z direction) correlations, as well as
transverse correlations for higher moments, In par-
ticular, a kinetic equation for the fourth moment would
be important because of its relationship with the physi-
cal phenomenon of scintillation,

The main results presented in this paper, as well as
the various extensions outlined in the previous para-
graph, although interesting by virtue of the fact that they
extend the corresponding results for the case of a sta~
tionary scattering medium, are, nonetheless, restric-
ted in scope because of the following three underlying
assumptions: (i) quasioptical approximation; (ii) non-
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dispersive medium; (iii) pure Markovian random pro-
cess approximation. Attempts are presently being made
towards relaxing these serious restrictions.
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Working along the lines of a procedure outlined by Keller, a technique is developed for deriving closed
first- and second-order moment equations for a general class of stochastic nonlinear equations by
performing a renormalization at the level of the second moment. The work of Weinstock, as reformulated
recently by Balescu and Misguich, is extended in order to obtain two equivalent representations for the
second moment using an exact, nonperturbative, statistical approach. These general results, when
specialized to the weak-coupling limit, lead to a complete set of closed equations for the first two moments
within the framework of an approximation corresponding to Kraichnan’s direct-interaction approximation.
Additional restrictions result in a self-consistent set of equations for the first two moments in the stochastic
quasilinear approximation. Finally, the technique is illustrated by considering its application to two specific
physical problems: (1) model hydrodynamic turbulence and (2) Vlasov-plasma turbulence in the presence of

an external stochastic electric field.

1. INTRODUCTION

Several significant advances have been made in the
area of stochastic nonlinear problems over the past few
years. Kraichnan' has introduced a technique, known
as the dirvect-intevaction approximation, wherein the
true problems of interest are replaced by stochastic
dynamical models that lead, without approximation, to
closed equations for covariances and averaged Green's
functions. This method has been used extensively in the
theories of hydrodynamic turbulence (cf. Ref. 1) and
plasma turbulence (cf. Ref. 2). In an effort to under-
stand Kraichnan’s direct-interaction approximation, as
well as peripheral contributions (cf. Ref. 3) related
primarily to the problem of Vlasov-plasma turbulence,
Weinstock® has presented a generalization based on an
exact, nonperturbative statistical approach valid for
both strong and weak turbulence. In the weak-coupling
limit, Orszag’s and Kraichnan's equations for the mean
Green's function (cf. Ref. 2), as well as Dupree's tur-
bulence equations (cf. Ref. 3), are recovered. Further
restrictions lead to the well-known quasilinear approxi-
mation. Weinstock’s work has been recently reformulat-
ed by Balescu and Misguich, ® and, within the quasilinear
approximation, it has been applied to the Vlasov-plasma
turbulence problem, with allowance for the presence of
an external, stochastic electric field. Furthermore, a
modified Weinstock weak-coupling limit, referred to as
the renormalized quasilinear approximation, has been
introduced, ® and its connection with Kraichnan’s direct-
interaction approximation has been discussed.

It was pointed out earlier in the introduction that in
Kraichnan’s direct-interaction approximation, the main
results are expressed in terms of closed equations for
covariances and averaged Green's functions. On the
other hand, Weinstock obtained for a Vlasov plasma a
general set of closed equations in terms of smoothed and
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fluctuating quantities. Although a connection was estab-
lished in the weak-coupling limit with Orszag’s and
Kraichnan’s equation for the averaged Green’s function,
no attempt was made to derive closed equations for
statistical moments of relevant field quantities. Along
the same vein, in Balescu’s and Misguich’s work on

the Vlasov equation with an external stochastic electric
field, an equation is established for the first moment

in the quasilinear approximation (cf. Ref. 5). This equa-
tion, however, is not closed, as it contains a term pro-
portional to the covariance. This difficulty is remedied
by solving the equation for the first moment using an
iterative procedure. In their most recent work, Misguich
and Balescu (cf. Ref. 6) do close the equations for the
first two moments by resorting to a renormalization at
the level of the first moment. Given that u(f) is a field
quantity of interest, they derive expressions for its
mean, £{u(®)}, and fluctuating, 6u(f), part within the
framework of the renormalized quasilinear approxima-
tion (a level related to Kraichnan’'s direct-interaction
approximation). From the expression for 6u(¢), a re-
lationship is set up for the covariance £{ou()ou{t’)}.
The relations for E{u(#)} and E{6u(t)6u(t))}, together
with an expression for a mean propagator (related to
Kraichnan’s averaged Green’s function), form, then,

a self-consistent set.

The procedure followed by Misguich and Balescu in
order to close the equations for the first moment and
the correlation function, when specialized to linear sto-
chastic problems considered in the first-order smooth~
ing approximation, has led in the past into serious diffi~
culties, as pointed out by Morrison and McKenna.” At
this stage, it is difficult to assess the degree to which
these difficulties are alleviated when working with non-
linear stochastic problems at the level of Misguich and
Balescu's renormalized quasilinear approximation. A
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clarification of this ambiguity is highly desirable; how-
ever, it will not be pursued in this paper, especially

as a radically different approach to the closure problem
will be followed instead.

It is our intent in this paper to present a technique
for closing the equations for the first two moments of
a field quantity ((?) governed by a stochastic nonlinear
equation of the form (2/0¢) u(¢) = Qu(#) in the special case
that the operator © depends linearly on i(¢). This is
achieved via the Weinstock—Balescu—Misguich formal-
ism, working, however, at the level of the second mo-
ment. We believe this approach is new and eliminates
the closure difficulties mentioned earlier in connection
with the work of Misguich and Balescu. Our work has
been significantly motivated by a procedure outlined
by Keller.®

In order for the discussion in this paper to be self-
contained, the work of Weinstock, as reformulated by
Balescu and Misguich, is briefly outlined in Sec. 2. In
Sec. 3, the Weinstock—Balescu—Misguich formalism
is extended in order to derive two equivalent equations
for the second moment using an exact, nonperturbative,
statistical approach valid for an arbitrary stochastic
nonlinear operator. These general results are special-
ized in Sec. 4 to the weak-coupling limit, and a com-
plete set of closed equations is obtained for the first
two moments of the field 1(f) on the basis of an approxi-
mation corresponding to Kraichnan’'s direct-interaction
approximation. Further simplifications lead to a com-
plete self-consistent set of equations for the first two
moments of i(¢) in the stochastic quasilinear approxi-
mation. Finally, the method developed in this paper is
applied to two physically important areas: (1) model
hydrodynamic turbulence (cf. Sec. 5), and (2} Vlasov-
plasma turbulence with an external stochastic electric
field (cf. Sec. 6).

2. REVIEW OF THE WEINSTOCK-BALESCU-
MISGUICH FORMALISM

Consider the general nonlinear stochastic equation

d
% L(t; @) =t au(t; a), t=t, (2.1a)

Bty o) = Q). (2.1p)

Here, $2({; @) is a nonlinear stochastic operator depend-
ing on a parameter acA4, A being a probability measure
space, and u(t; o), the random field quantity, is an ele-
ment of an infinitely dimensional vector space # and can
be either a scalar or a vector quantity. The discussion
in this section is general and applies independently of
the precise definition of the field u(¢; @) and the opera-
tor QUt; @).®

The stochastic operator § is split into two parts as
follows: §2=§;+ ;. The field ¢ is also decomposed
abstractly into two mutually independent terms, viz.,
pw=Ap + Fu by means of the formal introduction of the
two operators A and F. Au is called the average (or
mean) component, and Fu is the fluctuating part of u.
The uniqueness of the decomposition as well as the mu-
tual independence of the two components are ensured by
prescribing the properties A+ F=I, A=A, F?=F,
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AF =FA=0, where [ is the identity operator.

The interconnection between the decompositions for
the operator € and the field u is contained in the com-
mutation relations [€24, A].=0 and [, F].= 0 which con-
stitute a mathematical statement of the fact that the
fluctuating part of u is due only to &,. Therefore, Q,
must commute with A, and also with F=I-A4,

The specific realization of the “projection” operators
A and F which will be used in the ensuing work is the
following: Ap —¢& {u}, Fu —6u, where £{u}and 6y are
the ensemble average and fluctuating (incoherent) parts
of the random field u(f;a), respectively. Within the
framework of this specific realization, the afore-
mentioned commutation relations signify that &, is a
deterministic operator and £, is a generally noncentered
stochastic operator, *°

Operating on (2. 1a) with the operator A yields the
following equation:
9
clu O =2,Oc{u®} + A () ou ). (2.2)
On the other hand, operating on (2. 1a) with the operator

F=1-~A results in the following two equivalent equa-
tions for the fluctuating part of the field u:

G

37 04t = (1= A)QOBu(D) + 2O O, (2.3)

2 00(0) = ()6 (1) + (1= A (DO + 2 (OE{w(D}.
(2.4)

[An additional equivalent equation for 6u(f) given by
Balescu and Misguich (cf. Ref. 5) is not being presented
here since it will not play a significant role in our
discussion. ]

Equation (2. 3) can be solved for 8u(f) in terms of the
mean field and the initial value of the fluctuating part
of K,

S (t) = U, (¢, to)ou(to)«tft;dt’ Uatt, the, HELh}.  (2.5)
The Weinstock propagator U, is defined as the solution

of the initial value problem

d

_a_tUA(ty to)z(I—A)Q(t)UA(t, to): tzt(h (2.63.)

Uy(ty, to) =1. (2. 6b)

In the case of infinite space, the solution for the propa-

gator U, can be written symbolically as

Uplt, t) =X exp[ft‘;dt' (- A1), 2.7

where X denotes a time-ordering operator. [In general,
the solution (2.7) must be modified to account for bound-
ary conditions. ] Inserting (2. 5) into (2. 2) results in the
equation

2 ELR O =2 OELBOL + AR O UL, )11

+ f t dt' EL (UL, ) (E R ED}
t
’ (2. 8)
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In order to integrate (2.4), a propagator, W(t,?;), is
introduced first by means of the equation

2
= W(t, t) = Q)WL ty), t=t,

T (2.9a)

(2. 9b)

whose solution, for an unbounded region, can be formal-
ly written as follows:

Wity t) =1

’

t
W(t, t,) = X exp| ftodt'ﬂo(t')]. (2.10)
In terms of this propagator, the integral of (2.4) is given
by

bu(t) = W(t, t)oulty) + [ dt' W(t, )

x[(1 - A (out) + ¢t (2.11)
Iterating the last expression, we obtain the explicit
solution

sut) = gty 1)51(t0) + fi, at' Ayt )2 (VL (),
(2.12)
where

©

Ayt t) =7, [j:O at’ wit, )1 = Ayt 'W(t, t,). (2.13)
n=0

Finally, substituting (2. 12) into (2. 2) we arrive at the

following alternative equation for the first moment:

2 EB O} = 2O} +AZ O, )11

t
+ j; dat’ ELQ (A, ¢, )2y (LN}
’ (2.14)

The formal expressions (2.8) and (2. 14) derived by
means of a nonperturbative statistical approach are
valid for both weak and strong random fluctuations. It
should be pointed out, however, that neither (2.8) nor
(2. 14) constitutes a closed equation for &{u(f)}. This
would definitely be the case if £ were a linear operator.
Here, however, {2 depends on the field u by assumption.

In the sequel we shall make extensive use of expres-
sions (2.2), (2.5), (2.8), (2.11), and (2.14). For the
sake of simplicity we shall neglect in these relations the
parts proportional to 6u()). It must be emphasized,
however, that this is a matter of convenience only and it
will not detract from the generality of the formalism
which will be developed in the following sections.

3. EXTENSION OF THE WEINSTOCK-BALESCU-
MISGUICH FORMALISM TO SECOND MOMENTS

The exact, nonperturbative, statistical Weinstock—
Balescu—Misguich formalism outlined in the previous
section culminated in the derivations of two alternative
equations for the first moment [cf. Eqs. (2.8) and
(2. 14)] which, as pointed out earlier, are not closed by
virtue of the nonlinearity of the stochastic operator 2.

In this section we shall extend the work of Weinstock,
Balescu, and Misguich in order to derive two equivalent
representations for the second moment [analogous to
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Egs. (2.8) and (2. 14)] using, again, an exact, non-
perturbative, statistical approach.

Let us assume that 4 depends on a set of variables s
and on time, viz., 4= i(s,?). Moreover, let =Q[s, 3/
98, t, u(s, £)].1 [If there is not danger for ambiguity, we
shall use in the subsequent discussion the shorter nota~
tion p= u(f) and 0=Q(s, )].

Next consider the quantity R(, t') = u(s, H)u(s’, t). Dif-
ferentiating it with respect to f and using the original
Eq. (2.1) for u(s, t) results in the following equation:

3
5 Rt t'y = s, t)R(t, t'). (3.1
Similarly, differentiating R(¢,¢') with respect to ¢’ and

. . N 1, .
using the equation of evolution for u(st’), i.e.,
(3/3tYu(s', t)=5s", t" (s’, t'), we obtain the expression

9

o7 R, 1) =9(s", )R, 1),

(3.2
It should be noted that both Eqs. (3.1) and (3.2) are
of the general form (2.1); hence, the Weinstock—
Balescu—Misguich formalism introduced in the previous
section is applicable. However, several basic departures
from their general theory have to be made in order to
account for the simultaneous manipulation of Eqs. (3.1)
and (3. 2).

Operating on (3. 1) with the operator A yields the
following equation for the coherent part of R(¢, t'y;
a
5 ELRE, 0= 25, DELR(E, )} + ARy (s, DOR(E, ).
(3.3}

On the other hand, corresponding to (3.1) and (3. 2),
respectively, and using the Weinstock formulation (2. 3),
we obtain the following two equations for the fluctuating
part of R(t,t'):

2 6R(t, ') = (I - A) s, DOR(, ) + (s, DETR(L, ),
3.4)
% OR(t, 1) = (I - A)Qs’, t')6R(t, ') + (s, )
xE{R(t, t)}. (3.5)

Proceeding as in (2.5), Eq. (3.4) can be formally in-
tegrated as follows:

SR(t, t')=Uy(s, t, t)6R(¢y, t)

+ fttodv' Uals, t, 1) (s, DELR(T, 1N}, (3.6)

Analogously, the integral of (3.5) (evaluated at t=¢) is
given by
SR(ty, ') =Uy(s’, t', t)OR(t,, ty)

+ [V ar U, ¢, D0y (s, DETR(, D).
3.7
The first part of the right-hand side of (3.7), i.e., the
term proportional to 8R(t,, f,), is neglected for con-

venience. [It should be stressed, however, that in con-
tradistinction to the initial value term 6u(¢y) in (2.5)
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and (2. 8), which has been shown by Weinstock to be

negligible for large ¢, no justification has ever been
made for the neglect of such terms as 8R(f, ;). ] The
resulting expression is introduced next in Eq. (3.6),

SRty 1) = |, :,d’r Uals, t, (s, IELR(T, £}

* o AT Un(s, 1 t) Us(s', ¢, (6", NELR(E, T}

(3.8)
This expression for dR(t, ") is substituted next into (3. 3)
in order to obtain the final form of the equation for the
second moment [analogous to Eq. (2.8) for the first
moment],

3 '
ALl
¢
=Qys, DE{R(E, ¢} + f, dré{Qy(s, OUL(s, i, (s, I}
0

xELR(T, ¢} + f " arElous, DU, 1, 1)
to
xUy(s',t', (s, DIE{R(E,, D} (3.9)

In order to derive an alternative equation for the sec-
ond moment [analogous to Eq. (2. 14) for the first mo-
ment], we proceed as follows: Corresponding to (3. 1)
and (3.2), respectively, and using (2.4), we have

2
=7 OR(t, ') =Qys, )OR({, t') + (I - A)y (s, HOR(E, ')

+ 9 (s, DELR(E, )}, (3.10)
2 OR(E, ) = (s, VO, 1) + - A (s, 1)OR(2, 1)

+Q(s’, VLR, )] (3.11)

Proceeding as in (2.12), Eq. (3.10) can be integrated
formally as follows:

8R(t, t") =Ny (s, t, t)OR(t,, ')

+ ft;dmw(s, t, (s, ELRET, N} (3.12)
Similarly, the integral of (3.11) (evaluated at {=1) is
given by
SR(tg, t') = Ayl(s’, t', 1) 8R(¢y, o)
*J ardu(s’ 8, (s, NELR(E, T
(3.13)

Neglecting the first term on the right-hand side of (3.13)
and using the resulting expression for 6R(t,, t') in con-
junction with (3.12), we find that

SR(1,1') = [, a7 Ay(s, t, st (s, DER(T, 1)

+ ft;‘ atfy (s, ¢, ) Ayls’, ', (s, DELR(E,, T

(3.14)
Finally, inserting (3.14) into (3. 3) we obtain the desired
alternative equation for the second moment,

SERE, 1=y, DERE, 1)
¥ f L ar iR, Diyls, £, Vs, I}
to
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XE{R(T, N} + f dt E{y (s, DAy (s, 1, £y

to

xAy(s',t', I (s, IELR(E, T}, (3.15)
We close this section with two important remarks:
(1) As in the case of Eqs. (2.8) and (2. 14) for the first
moment, neither of the equivalent equations (3. 9) and
(3.15) for the second moment is closed, again because
of the nonlinearity of the stochastic operator ; (2) the
procedure outlined in this section can obviously be ex-
tended in order o derive equations for higher moments.

4. CLOSED FIRST- AND SECOND-ORDER MOMENT
EQUATIONS

The exact nonperturbative results contained in the
previous two sections are valid for an arbitrary non-
linear stochastic operator . In the sequel we shall re-
strict the discussion to the special case that §¥ depends
linearly on the field u. The class of nonlinear stochastic
equations (2.1) spanned by $¢ under this assumption in-
cludes two physically important problems: (1) model
hydrodynamic turbulence, and (2) plasma turbulence.

A. Direct-interaction approximation

In the first part of this section we shall present a
procedure for obtaining a complete set of closed equa-
tions for the first two moments of the field u in the
framework of an approximation corresponding to
Kraichnan’s direct-interaction approximation.

We introduce the propagator

Ut to) =X expl [} dt” a(t")) (4.1
as the solution of the initial value problem

—%U(t, L) =SB UE, 1), t=t,, (4. 2a)

Ulty, t) =1 (4. 2v)

in an unbounded domain. This, of course, is the funda-
mental problem associated with (2.1), viz.,

w(t) = U(e, ty) uty), (4.3)
whence

=AU, t)ulty), (4. 4a)

dulty=(I - AU, tulty), (4. 4b)

and, consequently, since p(Z) is specified, E{U(t, ¢y}
may be chosen as the basic quantity in the place of

Elu).

Equation (2. 8) for the first moment can be expressed
in terms of U{¢, t,), instead of u(f), by substituting (4.4)
as follows:

%AU(t, 1) = QOAU, t) + AR (OUAL, 1T - A)

+ ft ar’ E{ (UL, YU NAUE ty).
K (4.5)

Weinstock has established that in the weak-coupling
approximation,
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Ua(t, t) I = A)= (I - AE{ UL, )},
U(t, ) =E{UE, ¢}

Assuming for simplicity that u(¢) is deterministic,
(4.5) simplifies in this case to

&L, 1)
= 2 0E{UC, 1)}

+ ft t at' E{s (OELUE, e eNE{U, t)} (4.8)
1}

(4.6)
4.7

and (3.9) assumes the form

2 ELRGE, O}
= (s, DELR(E, 1)}

+ ft t arE{Q (s, HE{U(s, t, (s, DIELR(T, )}
0

tl
+ f aré{y(s, HELUG', ¢, i (s’, DIELR(E, I}
t
! (4.9)
In deriving this equation we have made use of the fact
that the propagators Uyu(s, t,¢,) and U,(s’,¢', 7) in (3. 9)
commute. Furthermore, we have used the relations

Ua(s, t, t)(I = AXE{R(ty, T)}
=(1- AL U(s, t, t Y R(t,, )}
=(I - A)E{U(s, t, t)R(ty, )}
= (I - AE{R(t, ),

the last equality following from the semigroup property
of the propagator U.

(4.10)

Equations (4. 8) and (4.9), together with (2.2), form
a complete set of closed equations for the smoothed
quantities E{u(®)}, E{R(, )}, and E{U(s, t, t)}. It should
be noted that since € ~6u by assumption, terms propor-
tional to the covariance &{6u(t)61(¢')} appear in Egs.
(4.8), (4.9), and (2.2). However, making use of the
formula E{p(®) u(t")} = E{RE, D =E{ p@®OIE 1@}
+&{6p@®)61(t)}, the covariance function can be ex-
pressed in terms of first and second moments.

The resolution of the closure problem in the weak-
coupling limit presented here has been achieved at a
level of approximation corresponding to Kraichnan’s
direct-interaction approximation; hence the title of this
subsection. It should be emphasized that in contradis-
tinction to Kraichnan’s direct-interaction approximation
which is based on a stochastic modeling scheme, our
technique has been developed along the lines of a modi-
fied Weinstock—Balescu—Misguich formalism. Also,
whereas in Kraichnan’s work the main results are ex-
pressed in terms of closed equations for the mean field,
the covariance, and an averaged Green’s function, our
results are given in terms of closed equations for the
first two moments and the mean propagator f{U}. 12

We wish to close this subsection with a few remarks
concerning the difference between our technique for
closing the equations for the first two moments and that
reported recently by Misguich and Balescu (cf. Ref. 6).
Their method is directly specialized to the problem of
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Vlasov-plasma turbulence with an external stochastic
electric field. It is presented here in a more general
setting so that comparisons with our work can be made
more easily.

Starting from Eq. (2.5) for the fluctuating part of u,

viz.,

su(t) = ft;dt' Ua(t, Y9 (E @D, (4.11)

where the part proportional to 6u(f;) is neglected for
simplicity, they obtain in the weak-coupling limit

su(t)= J at' E{Ut, N EEL @, (4.12)
and, analogously,
su(T) = ftfo dat” E{u(r, ey ¢"ME e} (4.13)

From the last two expressions, a relationship is set up
for the covariance,

Elouonnl= [t at" 1" Lo, el )Elme}
xe{utr, e EN)

This equation contains only covariances and mean fields;
therefore, together with the equation for the mean pro-
pagator £{U(t, t")} [cf. Eq. (4.8)] and the equation for
the mean field (in what they call the renormalized quasi-
linear approximation), viz.,

%{{u(t)} = Q¢ ()}

(4.14)

o [ ar et e,
i
(4.15)

constitutes a self-consistent set,

This type of closure, when specialized to linear sto-
chastic problems considered in the first-order smooth-
ing approximation (Us — W; also cf. the next subsection),
has been criticized by Morrison and McKenna (cf. Ref.
7). We feel that our approach to the closure problem,
based on a renormalization at the level of the second
moment, is fundamentally different from that of Misguich
and Balescu and is devoid of the aforementioned
difficulties.

B. Quasilinear approximation

In this subsection we shall outline a procedure for
closing the equations for the first two moments within
the confines of the quasilinear approximation. The latter
is essentially a perturbational method at a level lower
than the direct-interaction approximation discussed
earlier. It is applicable for small correlations and cor-
responds to retaining only the zero-order term in the
series expansion (2.13), viz., Ay, -~ W. If this approxi-
mate expression for A, is substituted into (3.15), one
has!®

&R, )
= Qq(s, DELRE, )}
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+ f dTé{Ql(s’ t)W(S7 t: T)Ql(s, T)}é{R(Tr t,)}

£y
t'
v [ artans, 0w’ ¢, D’ MicRE, ).
ty
(4. 16)
In deriving this equation we have made use of the com-
mutation of the operators W(s’, t', 7) and W(s, ¢, t,), as
well as the semigroup property W(s t, toER(,, T}

=E{W(s, t, t)R(t;, )} =E{R(f, T)}. (The last equality is
valid only in the quasilinear approximation.)

Equations (4.16) and (2.9), together with (2.2), form
a complete set of closed equations for the averaged quan-
tities E{ ()}, E{R(, t)}, and W(s,t,t,)

5. HYDRODYNAMIC TURBULENCE
Let the motion of a fluid be described by the Navier—
Stokes equations

ad 2 0
(a—t-— vv2 +V(X, t) -a—x>v,~(x, t) = —EP(X, t) +fi(xy t),

(5.1a)
i=1, 2, 3, and the incompressibility condition
0 1 =0, 5. 1b)
7, vy(x, (5.1p
Here, v(x,?) is the fluid velocity vector field, v is the

kinematic viscosity, f(x,?) is an externally supplied vec-
tor forcing function, and p(x,?) is the pressure divided
by the density.

It is well known that at high Reynolds numbers the
character of the fluid motion changes from laminar to
turbulent. It is believed that the “chaotic” or turbulent
flow is described adequately by the Navier—Stokes equa-
tions, the solutions of which (at high Reynolds numbers)
are extremely unstable. Predictions concerning the
turbulent flow on the basis of the Navier—Stokes equa-
tions would require the specification of initial conditions
with unrealistic accuracy. Because of this, it is of in-
terest to determine equations for smooth, mean quanti-
ties, such as the first and second moments of the velo-
city field. (The notion “mean” is used here synonymous-
ly with the ensemble average over various realizations
of the same flow with different initial conditions.)

For simplicity we are going to deal with a “model”
hydrodynamic turbulence, assuming that the pressure
is uniform throughout the fluid volume. We shall also
neglect the external force in (5.1a). The simplified
Navier—Stokes equations are then of the general form
(2.1), viz.,

g
—a?v,(x, 1) =Qu,(x, ) (5. 2a)
with
Q=vVe _v(x, £) = (5. 2b)
y % .

The mean and fluctuating parts of the operator £ can be
readily written down as follows:

Q,=vv2 - &{v(x, t)}-%{, (5. 3a)
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3
Q = = dv(x, ) X (5. 3b)

A. Direct-interaction approximation

We are now in a position to write down explicitly a
complete set of closed equations for the first two mo-
ments of the velocity field in the direct-interaction ap-
proximation (cf. Sec. 4).

The equation for the mean velocity field [cf. Eq.
(2. 2)] assumes the form

(- ver setvte, -2 elon, )

=-&{ovix, ) .(a/ax) v ,(x, £}, (5.4)

Corresponding to Eq. (4.9) for the second moment, we

have in this case

(a% -2+ E{v(x, 1)}

%) 6{R{j(xa XI’ t’ tl)}

:-aa— [t d‘rf{U(t, T)f{ﬁvk(x, 8w, (x, TV}
Xe Jt,

6Ul(xly T)}a_xl"f{Rij(x’ xly ty T)‘}!

0
x‘a}“l(f{Rij(X, x/, T, 0} +

XE{Bvy(x, 1) (5.5)

where E{R;;(x, %', £, )} =E{wy(x, Hv;(x, t)}. Finally, the
equation for the mean propagator £{U(t, ¢,)} [cf. Eq.
(4. 8)] becomes in this case

(8%— v +Evix, B} '%)5{[/0, tot

d
8x

xg;f{U(T, tot

dT(f{Ut T)E{ 6w, (%, 1) 6v;(x, T)}

(5.6)

In the derivation of (5.5) and (5. 8) we made use of the
incompressibility condition (5. 1b).'* The closure of Eqgs.
(5.4)—(5.6) is more clearly evident on recalling the
formula £{6v,(x, ) ov,(x’, "V} =E{ R, (x, %, ¢, )}

- Evilx, HiE v (', B}

B. Quasilinear approximation

In order to write a closed set of equations for the
first two moments of the velocity field within the region
of applicability of the quasilinear approximation (cf.

Sec. 4), Eq. (5.4) for the mean velocity field is retained
unaltered; however, in Eq. (5.5) for the second moment,
Elutt, )} must be replaced by the propagator W(Z, t')
which, in turn, satisfies in the case of hydrodynamic
turbulence the following equation [also cf. Eq. (2.9)]:

(%-vv2+5{v(x fHt- )W(i th=0, t=t, (5.7a)
W(t,y, t)=1. (5.7b)

The solution of (5.7) for an unbounded region can be
formally written as follows:

W, t) =X exp[ft: dt’ (VVZ ~Efvix, Y 53—{)] . (5.8)
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The basic closed equations for the first two moments
derived on the basis of the quasilinear approximation
by means of the procedure outlined above are valid for
the general case of nonstationary, inhomogeneous, and
anisotropic turbulence. These equations simplify con-
siderably by introducing additional constraints.

As an illustration, we consider here the case of sta-
tionary turbulence. In this special case we need only be
concerned with the equation of evolution of the corre-
lation tensor of the velocity field, C;;(x,x’,7)=¢&{v;(x, 1)
Xv;(x’, t = T)}. [The quantity E{v,(x, O} =E{vi(x, 1)} is
assumed to be given. | We put, also, ¥v=0 in the expres~-
sion (5.8) for the propagator W(t, ¢;). This means that
we neglect the effect of viscosity on turbulence, but not
on dissipation, an assumption that seems reasonable for
well-developed turbulence. Under these restrictions,
Eq. (5.8) reduces to

W(t, t;) = exp [(— Elvix, to} "a%) (t- t[,)]

(the time-ordering operator is the identity operator in
this case), and the correlation tensor evolves in time
as follows:

(5.9)

(a%_ v +E{v(x, to)} aix) £(%,%,7)

- '/: ate {ka(x, 'r)a—i-kexp [(— E{vix, 1)} %)

X(T—t)] v, (x, t)}a—ilfﬁ(x,x', £). (5.10)
In order to evaluate explicitly the effect of the opera-
tor expl- (E{v} - (3/8x))(7 =] in (5. 10) we will make
additional assumptions, concerning the mean flow. We
recall that expla(?3/8x)]f(x) =f(x + a), and exp(A + B)
= expA expB provided that [A4, B].=0. We assume that
the exponential operator in (5. 10) is factorizable, i.e.,
the commutators are close to zero [(3/3x;)¢{v;} =0,
i#j] or, for example, that we have a parallel mean
flow, e.g., E{vi=1(0, 0, {vy(x, £)}). In this case (5.10)
reduces to the simpler equation

<a%_. v+ E{v(x, 1)} -—%{)F”(x, x',7)

=+f At Lol 5= ElVHT =), 71

x 0y x = ELHT = 8), %, £] = f " atEfunlx, £}
0

8%,
xéi—’kf{v,[x— ElviT =0, 8,

x-plx - ElHE -8, %', 1.

o, (5.11)

This equation for the correlation tensor is rendered
closed on specifying the initial condition [;;(x,%’, 0).

6. VLASOV-PLASMA TURBULENCE WITH AN
EXTERNAL STOCHASTIC ELECTRIC FIELD

A collisionless plasma in the presence of an external
stochastic electric field is governed by the one-species,
self-consistent Vlasov—Poisson equation

(5 v Lm0 0 B 0] o) s, v, 0 =0, (6.10)
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V-E(x, ) = 4me [ dv(fx,v,1) - ndv)]. (6.1b)
Here, f(x,v,1) is the particle distribution function, e
and = are the charge and mass of the particle, respec-
tively, »n, is the density of a uniform background of
neutralizing charge, E°(x,?) is the self-electric field,
and E°(x, ?) denotes the external stochastic electric field.

Equations (6.1) can be brought into the general form
(2.1), viz.,

Bitf(x’ v, t):Qf(xy v, t), (623.)
with

Q= -v - LB D B nl-— (6. 2b)

ox m ’ ’ ov’

on introducing the relationship

ES(x, 1) = L®IF(x, v, £} = n,6(v) ], {6. 3a)
where the operator L(x) is defined by
Lx)fix, v, D)

— 0 / ’ ? ’ ’ ’

=dme s dex A‘dv Qx, x)flx', v, 1). (6.3b)

Q(x,x") is the Green’s function for the Poisson equation.
In the case of an infinite plasma,

1 1

“ar Ix-x1" (6. 3¢)

Qx,x') =
The coherent and fluctuating parts of the operator £
[ef. Eq. (6.2b)] are given as follows:

R)==v - SR, O + (B, O 5, (6.4)

Q=- %[GES(X, 1)+ 6E(x, 8)] (6. 4b)

d
ov’
A. Direct-interaction approximation

We next present a complete set of closed equations
for the first two moments of the particle distribution
function in the direct-interaction approximation.

The equation for the mean distribution function is
given by

(581‘— +v ._§+%€{Et(x, 0} %)é{f(?(, v, i)}

0x

z‘;Tezf{GE’(x, 1) - (3/3v)8f(x, v, D}, (6.5)

where, for simplicity, we have used the shorter nota-
tion Ef(x, #) = E°(x, #) + E®(x, f}. The equation for the sec-
ond moment assumes in this case the following form:

a I 4
(6%‘ +v Ix +%6{Et(x, H} -%)6{1%(5, s',t, )}

- f.)z_a[td'r(f{U( t, V6B (x, £)6EY (x, T}
—(m a’U{ to 8,1, i\X, jxy

xa—é{R( s, T, )} + 3)2—8— ft'dTE{U(s’ ', T}
az)j s) ? 3 avi A H y

w
0

3
X{{GE&(X, t) 6E§(X,, T)}%jf{{R(S, S,, t; T)}: (6 6)
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where 8= (x,v) and {R(s, s, ¢, ¢} =E{f(s, OAs', 1))}
Finally, the equation for the mean propagator &{U(s, t, £,)}
becomes in this case

0 3 0
(57 o melm e o} ) Elute, 10}

= (ﬁ)zi [ ‘ drE{U(s, t, T)IE{BEL(x, t)6EL(x, T)}

m/ dvu, ty

XU T 1), (6.7

Equations (6.5)—(6.7) constitute a closed self-consis-
tent set (1) in the absence of an external stochastic elec-
tric field, and (2) in the case that S{0E®(x, 1)Of(x, v, )}
={0. Both of these restrictions can be lifted without too
much difficulty. However, we shall not pursue this is-
sue further in this paper.

B. Quasilinear approximation

Within the domain of validity of the quasilinear ap-
proximation, Eq. {6.5) for the mean particle distribu-
tion function is retained as it stands; however, in Eq.
(6.6) for the second moment, &{U(s, t,¢")} must be re-
placed by the propagator W(s, t,¢') which, for the prob-
lem under consideration here, satisfies the question

3 3, e 3

oty — 4 — 3 e = >

<at Vs m(f{E (x, )} av)W(s,l,to) 0, t>t,
(6.8a)

Ws, ty, t)=1. (6. 8b)

The solution of (6. 8) for an unbounded Vlasov plasma
can be formally written down as follows:

W(s, 1, 1) =X [ Car (—v - Ll t’)}‘»a—]
8,5ty =4 exp t "\ VT m % ov/)]”
(6.9)

The remarks at the end of the previous subsection
concerning the closure of the resulting equations for the
first two moments apply here as well.
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The doubly infinite series for Appell’s function F,(a,a,,a,, by, by;x,y) is written in terms of four of Appell’s
F, functions. Analytic continuations are given for the F; series, thereby allowing one to obtain a new
analytic continuation for the F, series. The new doubly infinite series are all absolutely convergent if their
variables satisfy (X< 1 and |y < 1, whereas the F, series is absolutely convergent only in the domain

|x+[y < 1. The analytic continuations given here are very useful for evaluating the Appell F, series

when one of the variables is near unity. In particular, our results are useful for calculating radial matrix
elements over products of Dirac—-Coulomb functions and the electromagnetic interaction Green’s function.

. INTRODUCTION

Radial matrix elements of the electromagnetic inter-
action between the states of a relativistic electron in
the Coulomb field of a point nucleus can be expressed
as a Laplace transform of the product of two confluent
hypergeometric functions, !

I= j;]'“drexp(— Aryr @1 Filay, by, ky7) (Filas, b, 2,7).
(1)
This integral can be performed for values of @ unequal
to zero or a negative integer to obtain,

I=C(@)aFy(Qa, ay, ay, by, by ky /B, ky/4), (2)
where F, is Appell’s hypergeometric series® which is
defined as

5+ (D) menl®) maz)

F b b . — m+n m\*2/n xm n.

Z(Q, Ay, Ay, Oy, Oz X, y) mL':' (bl)m(ba)n””n! y (3)
The Appell F, series is absolutely convergent if {x|
+lyi <1,

Various analytic continuations for the F, series have
been given in the literature, 3=° but the convergence con-
dition on the resulting series remains of the form |x|
+ 1yl <1, accdrding to Horn's criteria.® Qur investiga-
tion® of Laplace transforms over products of the asymp-
totic series form of the Whittaker functions led us to
consider the possibility of expressing the F, series in
terms of Appell's hypergeometric series? F, defined by,

Fya, 8,8, % x,y) = 5 (nBlal @B,

xm n
kT eI I

4
which is absolutely convergent for x| <1, |yl <1, We
will first derive the relation which expresses an F, se-
ries in terms of four F; series which have nonover-
lapping convergence domains, and then give two analy-
tic continuations of the Fy series which combined with
the first result give a new analytic continuation of the
F, series.

These results will be useful in calculating the brems-
strahlung and the virtual photon spectrum associated
with high energy electron scattering from the nucleus.

Il. THE F, SERIES EXPRESSED IN TERMS OF
F, SERIES

Appell’s Fy series can be analytically continued by use
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of the Barnes integral representation to four F, series
by taking the contour on the left side of the complex
plane. This result is quite standard and is explicitly
given by?

Fy(a, a’,B,8,v;1/x,1/y)
=fla, o, B, B)x®y* Fy(y, ¢, @', a=B+1, 0 - B' +1;x,%)
+fB, 0’ a, B )Py F(B-aty, B, o, B=at],
o - B t1x,y) +f(a, B, 8, a)xy*
XFyf'—a tv,0,8, a-B+1,p -a +1;x,3)
B, B, o, &)y R (BT —a—a ty,
BB, B—a+1, B —a *+1;x,y), (5)
where

FO 1,9, 0) =(= V(= 1p RIT RN b)

L) (o)L (v =2=u)’

-y:a+a’+1_'y’,

and we have written F; in terms of 1/x and 1/y for con-
venience. We can apply Eq. (5) to the following four F,
series which have special relations among their vari-
ables and parameters:

Fy(a,a',B, 8" at o’ +1-%1/x,1/4),
Fy(a,1-8,8,1-a",a=-B"1t2-v(1-v)/x,(y=-1)/y),
Fy(1-B, 0, 1-a,8, a =B +2-% (x- 1)/x,1-x)/y),
F(1-8,1-81-a,1-a,3-8-F -
(xTy-1)/x,(x+y=1)/y). (8
By making use of the one-term continuation relations
for the F, series,®
Fy(a, ay, a, by, by; x, y)
=(1-x)""Fya, by —ay, ay, by, by; x/(x ~ 1), /(1 - %))
=(1 =3 Fy(a, ay, by = ag, by, by; x/(1=9),3/(y - 1))
=(1-x-y)"Fy(, by - ay, by — @, by, by;
xfx+y=-1),y/(x +y=1), )

the four F, series obtained from use of Eq. (5) for each
of the F; series in Eq. (B) can be written in terms of
the four F, series explicitly appearing in Eq. (5). That
is, we have a 4X4 matrix connecting four F; series and
four F, series. This matrix can be inverted to give the
following result:
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1
+a ta,- ;
I“(bl)r‘(bz)r(a_al_az) Fz(l a4 Ty - Q, 4y, a, bl’bzyx’ _V)

=AF3(a1,a2,a1+1—b1,az+1—b2, C!;%, ‘—1,>

tBF, (aubz—aa, @ tl-by,1-a5b,- 20,1

1X-y’L;_l> +CF, (bl—al, y 1 —ay, a,+1-b,,
i11—2a1+a;x;l’ l;x> +DF3(b1—al,bz—a2,
l-a,1-ay b1+bg—2al—2a2+a;x_+y_‘_1,
x+3-1>’ (8)
where
A= x%y2 1

T'(by = a))T(b, - a,)T (@)’
(1 _y)a-2a2+b2-1

T'(by — a)T{a)T (b, = 2a, + @)’
(1 — x)*~2a1+041

T(a)T (b, - a,)T(by — 20, + )’

B=x"(~ y)az'bz

C = (- x)81-019-a2

(1 —x - y)a+b1+b2-2a1-2a2
T(a))T(a,)T(by+ by — 2a; — 2a, + @)

D= (- )17 (= )27

Ill. ANALYTIC CONTINUATION OF THE F; SERIES

In this section we will obtain analytic continuations
of the F; series which are useful when one of the vari-
ables is near unity (¥ #1), and the other variable is
either smaller or greater than one.

The Barnes integral representation of the Fq series
ig?

Fa(ay ﬁa Cl,, B,y ')/,' X, y)

(e +HT(B +1)

_ 1-\()/) _1 fk+i-°
T (T (B 27 T(yt?)

kRaiw

XT(=t)(= ) Fy(a, B, ¥ Tt;x), (9

where ,Fy(a, 8, ¥+ ¢; x) is Gauss's hypergeometric func-
tion, and the contour in the ¢ plane parallels the imagi-
nary axis, except that where necessary, it is indented
so that the poles of I'(a’ +#) and T'(B" + 1) lie to the left
of the contour, and the poles of I'(-#) lie to the right of
the contour. The real parameter 2 is chosen such that,
E=Re(a+ B -7 +€ where € is a small positive number.

Gauss’s hypergeometric function has a number of
analytic continuations. We make use of the following
one which is valid for largx! <7 given in Ref. 3, p. 109:
T(c)T'(c-a-Db)

T'(c-aT(c-5)

XxC°Fla,a+1-c,atbt1l-c;1-x")

+1‘(c)1"(a tb-c)
T(a)T (b)

Fla, b, c;x)=

xa-c(l - x.)c-a-b

XF(c-a,1-a,ctl-a-b;1-x"), (10)

Substituting this continuation into Eq. (9), we obtain
two integrals in the / plane. We will write these as
Fy(a,B,a',8",v;x,9)=1; +1,, where I, and I, are given
explicitly by the following:

1720 J. Math. Phys., Vol. 17, No. 9, September 1976

o T 1 ’”""’( e D@ +OTE" +HT (= 1)
VCTTOTEN 27 Jyie Y T T T (= B)

XT(ytlea=Px® ,Fila,atl—y~t,atBT1-y-1

1-x1y, (11

_ I 1 [reie e (@ OB TOT(=1)
12_1"(&')1“(5')%_/;_,..0 =¥ == R

XF(CY +B -y~ t)xa-Y-t(l - x)'“t-a-ﬂ

XpF(ytt—al-a,yt1ti-a=-f1-x7), (12)

Two different analytic continuations of the F, function
can be obtained by either closing the contour in the ¢
plane on the right in both terms, or by closing the con-
tour on the left for /; and on the right for /,. By using
the asymptotic behavior of the gamma function, we find
the condition for absolute convergence of /; and /, when
the contour is closed on the right in the / plane to be
Re(a' T8 —=¥)<1, vl <1, and Re(a’ T8 Ta+B-1%)
<2, ly(1=x) | <1, respectively. The condition for ab-
solute convergence for I; when the contour in the / plane
is closed on the left is Re{a’ +8' - ) <1, I1/y] <1,

The integrand of /; has ascending sequences of poles
atf=nand f=a+ -7 +t1+tn lying in the right-hand con-
tour, and decreasing sequences of poles at f =- o' - »n,
t=-p"—n, and {= a+p -y —-n lying in the left-hand
contour where n =0,1, 2, -. .. The integrand of I, has
ascending sequences of poles lying in the right-hand con-
tour atf=nand l=a+B-y+1+tnuforn=0,1,2,---.
Note that the particular separation between the left and
right contours depends on the choice of % given, follow-
ing Eq. (9), but since the original integrand contains no
singularities at « T8~y T#, the final result is indepen-
dent of the particular choice of 2. When closing both con-
tours on the right, the sequences beginning at a * 8~y
+1 cancel and we can write Fu(¢o, 8, ', ', ¥; x,v) =@,
+@Q,, where @, and @,, obtained by explicit integration
in the / plane and using the residue theorem, are given
by

LT (y-a=-8)
LA St o iy of cey )
% Z‘I (a)m(Bl)n(a,)n(a +1- ’Y)m-n (1

~lym,n
L BT BT it 17T

’

A=) P ()T (2t B - )
T(a)T(B)

Q= (13)

X 2 (a')n(ﬁ')n(l - a)m(‘y— a)mm

mn (Y=0,(1 Ty — =By, min!

X(1=xH"(x(1 - x))",

The convergence condition for these series according
to Horn’s criteria® are Iy1<1and {1-x7|<1 for @,,
and [y(1-xM1<1land [1-x711<1 for Q,.

For ly|>1, we need to close the contour in the {
plane for /; on the left. Doing so we can write
Fola,B, a8, v;x,v)=C1+(2+C3+C4+C5 where
these series are given explicitly by
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T(»(a+tp-7)
()T (B)

(a) (' k1= 0} (Y = @) pn
XL(Y @),(1+y = a=p),, min!

TV tatf-y+ I ta+tp-y+1)
T'(a)T(B)T()T(B)

XT(y = a=B=1xPy(1 - x ) (= y)2B~

E(a'+a+6-7+l)n(6' tatf-ytl),
m,n (Q+B— ‘y+2)n(ﬁ+1)n(2)m+nm!

C,= X (1 = )

(1 x-l m(y(l x-l))n

Cp=

X (1 - a) (B + 1)m+n(l - x-l)m(y(l - x-l))'ﬂ’

TOT(B - T(y-a-B-a) o
rEr(y-a-aT(y-5-~ )"

s (@)A1t & tB-1) (@t t1=7),,
w1t @ =B (atBT1+a <), min!

X (1 - x-l)m,v-n

T(Mr(a’ - )r'(y-a~B-8)
T(a)T(y- a-B)T(r-p-8")
» L(B’)n(a)m(1+a+ﬁ—7),,(l+ﬁ T8 =¥,

mn(lTB —a),(1Ta+tp =9, (1+tatB+B = ¥),..

, l_x-lm -n
X(CZ+1+B —)/)mq»n( m‘ ) 3:,1'_'

C,= (- y)-a'

(14)

Cy= X (=)

bl

_TMr(a+B+p —Y(ata *B- YT (y- a-p)
Cs= T (a)T(B)

xx-a (_ y)a By

XZ; (a)m(l_a)n('y_ a_B)n(l"ﬁ)mq.n
mn(QtyY=a=-B-B),(17v-a=ad =B),(1),.m

X(1— )™y,

These series are absolutely convergent if 1y(1-x"1)1
<land |1-x1]<1for C1 and C2 and |1/y] <1 and
[1-x <1 for C3, C4, C5.

IV. CONCLUSION

The results given in Eq. (8) and Eq. (13) or Eq. (14)
provide a new analytic continuation for the F, function.
To demonstrate this more explicitly, consider the case
of electron scattering in the presence of a point nucleus
of charge Z. The incident and final electron energies
(momenta) are E, (P;) and E, (P,), where P= (E%- M2)1/2
and the energy lost by the electron is W=E, - E;. The
radial integrals describing this process in distorted-
wave Born approximation can be expressed in terms of
Appell’s F, function® with variables x = - 2P,/(P, - P
-~ W) and y = 2P, /(P, ~ P, -~ W). For physical values of
the kinematic variables, x and y are both very large.
Use of Eq. (8) to transform the F, function to four F,
functions results in the following sets of variables:

— (Py - Py~ W)/2P,, (Py-P,-W)/2P;; IL. (P, +P,

T W)/2P,, (P, tP,tW)/2Py; IIl. (P, +P,~ W)/2P,,
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(P1+P2—
2P, .

W)/2P;; V. — (Py— Pyt W)/2P,, (Py- P, T W)/

Variable set I is very small for all W except at the
end point P, =0, and hence the F, function with set I
variables is absolutely convergent except very near the
end point which we do not consider. One of the variables
in sets II and TII is always very near unity (vrr <1, %1
= 1) for relativistic electrons, the other variable being
greater than one in set II; and less than one in set III.
An F, function with set III is semiconvergent as is, and
the use of the analytic continuation given in Eqg. (13)
will result in absolute convergence. The Fj; with the
set II variables has to be continued by means of W, the
energy lost by the electron. For W <50% E,, both
variables are less than one in magnitude and the F,
series is absolutely convergent. For W2 50% E;, vy
=W/P; <1, but |x;y| ®=W/P,>1 and the F, function needs
to be analytically continued. The use of the continuation
given in Eq. (14) will result in absolutely convergent
series.

We also note that the analytic continuations given in
this paper will allow the rapid evaluation of the Appell
F, function when one of the variables, say x, is near
unity. Depending on whether y is less than or greater
than unity, the continuations of Eq. (13) or Eq. (14) can
be used. The resulting doubly infinite series will be
very rapidly convergent for one of the indices, and ab-
solutely convergent for the other. This can be used
when both variables are in the neighborhood of the sin~
gular point (1, 1), but clearly the summation over one
of the indices will be rather slowly converging.

To summarize, we have found a new analytic contin-
uation of the Appell F, function in terms of double
series which are absolutely convergent if their variables
satisfy lx| <1 and ly] <1. This continuation has a prac-
tical use in the analysis of electron scattering from the
nucleus, and also permits one to evaluate the Appell
function near the singular point x=1, y=1,
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The coupled nonlinear matrix integral equations for the matrices X(z) and Y(z) which factor the
dispersion matrix A(z) of multigroup transport theory are studied in a Banach space X. By utilizing fixed-
point theorems we are able to show that iterative solutions converge uniquely to the “physical solution” in
a certain sphere of X. Both isotropic and anisotropic scattering are considered.

. INTRODUCTION

In a recent paper,! the Chandrasekhar H equation has
been studied. In particular the following results were
shown:

1. An iterative procedure, proved by Bittoni ¢ al?
to converge to a unique solution inside a certain region
of the Banach space L(0, 1), actually converges to the
“physical solution,” i.e., the solution which is analytic
in the right-half complex plane. (Alternatively, the
“physical solution” is the one which obeys the so-called
constraining equations. )

2. The iteration scheme of Bittoni et al can be extend-
ed to all values of IIjll, provided $(u) =0, pe(0,1],
where ¥(L) is the “characteristic function (19! =c¢/2 in
one-speed isotropic neutron transport).” In Ref. 2, only
the case 1Pl <1 had been studied.

The advantage of these results is that in any “one-
group” transport problem, the H functions can be cal-
culated iteratively without the necessity of introducing
constraining equations. Furthermore, the knowledge of
the region of Banach space in which the solution exists
is of considerable help in performing the numerics. In
particular, we observe that if the initial estimate is
chosen to be zero, the iterative procedure always con-
verges to the “physical solution.”

The purpose of this paper is to present a similar itera-
tion scheme for solving the matrix versions of the
Chandrasekhar H equations. The solution of these equa-
tions provides the Wiener—Hopf mafvix factorization of
the dispersion matrix A and is needed to construct the
solution of half-space multigroup transport equations. 5.8
[In the one-speed or scalar case the H function is the
Wiener—Hopf factorization of the dispersion function

A2).]

For the multigroup problem it is necessary to consi-
der coupled nonlinear nonsingular matrix equations
which have been written in the form®

(1a)

X(-2)=Cts -z ' Y- s)z2A(s) ds
0 stz

and
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ds

1
Y(-2z)=2-2 ﬁ s2a(s)X (- S)ETZ-:. (1b)

Here Z is the diagonal cross section matrix with ele-

ments 0;;0;, 0,> 0,> ---=0y=1, and C is the group-

to-group scattering matrix, while A is a diagonal ma-
trix with elements

A;;(s)=0,,8(s - 1/0;),
where 0 is the Heavyside function
6(s-1/0)=1,
=0,

s<1/0;
s>1/0;.

Moreover, X and Y factor the A matrix, 8

AR)= (2 -20)Cs - [} plal - pot]tap,

in the form
A(z)=Y (- 2)X(2), (2)

where Y(z) and X(z) are supposed to be analytic and non-
singular for Rez < 0. Because Y(z) and X(z) factor the
dispersion matrix A(z), the requirement that Y(z) and
X(z) be analytic and nonsingular for Rez <0 is equivalent
to the constraints®

detY(+v,;) =detX(+v;) =0,
Rev;>0, j=0,...,d-1,

where =V;, j=0,...,d~1 are the 2d discrete Van
Kampen-Case eigenvalues which obey

Q(xv;) =deth(xv;)=0.

The constraints in Eq. (3) are usually introduced to as-
sure that the solution of Egs. (1) (or comparable equa-
tions) is unique.” The solution of Egs. (1) which obeys
the constraints in (3) will be called the “physical solu-
tion.” In the current analysis, uniqueness is guaranteed
by restricting the solution to a certain sphere in Banach
space. The resulting solution can then be shown to be
the “physical solution.”

The factorization of A(z) (with a somewhat different
notation) was originally obtained by Mullikin® and, as
used in Ref. 6, was restricted to the case p <%, where
p is the dominant eigenvalue of the nonnegative matrix
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£71C. The results of this paper are restricted to the
more restrictive case [;'1ACH,{(s)ds <3 for the case of
isotropic scattering presented in Sec. II and a similar
restriction for the case of anisotropic scattering pres-
ented in Sec. III. Here !l Il, represents the “matrix
norm,” e.g.,

Al =sup2s|Ay] . (4)
i J

Before presenting our analysis in the next section,
we might remark that if C is a symmetric matrix, C
=C*%, then A=A’ and it can be shown quite easily that

Y=X'C.

Then the two coupled equations (1) reduce to a simple
equation, which after appropriate transformation be-
comes the “matrix H equation” considered by Siewert
and co-workers.®?® Thus the equation they studied is a
special case of ours.

. BANACH SPACE ANALYSIS

Equations (1) can be transformed into a2 more con-
venient form by defining

U(z)=C'zXY(-2) (5a)

and
Uf2y=YY-2)z (5b)

For ze (0,1}, Egs. (1) reduce then to the coupled non-
linear, nonsingular matrix integral equations

ds (6a)

Uy(2)=1+z f U, (2)U, (S)LA(S)E‘IC

and

1

Uyfz)=I+z f zA(S)ZICU(s) Uz(z)—df—. (6b)
¢ zTts

We consider U; and U, as elements of a Banach space

X, with norm!?
U llx,= [, 1Ull(s) ds, (7
where Ui 1, is the matrix norm already introduced. !

Now consider the Banach space X, the Cartesian product
of X, with itself,

U=o, Ulex, U, U,eX, (8a)
with norm

Wix= ;" max{llU;]ly, 11U,]l,)(s) d (8%)
One can readily verify that i Iy is a norm.

Let us now define U; € X; and U, e X, by

Uy(s)=zA(s)zCuy(s), selo,1] (9a)
and

Uy(s) = Uy(s)za(s)zc, selo,1]. (9b)

We can then write from Eqgs. (6) the single equation for

U=, UleX, ' =F+AU" U, (102)

where
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F=lzastc, cazClex (10b)
and A is the bilinear form
_ 1 ds 1 ds
au @ =z [(nene - [ novels].
(10¢)

The following lemma which is proved in Ref. 2 (and re-
stated in Ref. 1} is vital to the subsequent analysis:

Lemma I: Let Y be a Banach space with norm Ul li,
and B(u, v) a bilinear map: YXY ~ Y with “norm”

1Bl =sup{li B(u, v)liy : llully =1 and livll, = 1}.

Then for 2I1B + B*li;llfil, <1, the equation
u=Tusf+Blu,u}, fe¥

has one and only one solution in the ball
S={ue ¥:llu-fly <}

Furthermore, TSCS. [Here B*(x, ») = B(v, u). ]

Corollary: For every uyc S, lim,..T"u, converges in
Y to the unigue solution of the equation u= Tu.

We now prove

Lemma II: f A is the bilinear form given by Eq. (10c¢)
and A*({/, ) =A(/, /), then IA+A*i=1,

Pyoof: By direct calculation we find

AW, 1y +AxU, )lix

1 x
= 4[) dxmax[" ]:ds V1(")Uz(s)s+x

! x
+ﬁ ds Ul(x)Vz(s)S+x e "j:ds Ux(S)Vz(x)Sﬁ
1 x
+ ﬁ ds vl(s)Ua(x)sTx"M]
1 1
< f dxmax[f dx AV (DN UL ()
0 0

1
f as Ul ()17, 1y (9)
0

RIARSITANGIFE

+ “V1“M(S)HU “u(x} ]

f dx J’ ds{ma.x[llVlllu, 17,01, )

X max(11 Gy, 10 (s

~ T max(IVylly, 1V,lly }(s)

Xma.X[“Ux”m “Uz“u](x)g‘i__x}

1
< f dx f ds max{[1¥,l,, 1,1, 1)
0 0

x max[“Ulﬂu, “ Uz“}.l](s)

(In going from the third to the fourth relation, the change
of variable ¥ — s has been made.) The above calculations
show that Il1A + A*ll <1, Equality is obtained by setting

U =V =[1,I]. This completes the proof of the lemma.

Noting that
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1y = [NACH(s) ds,
we combine Lemmas I and II to obtain

Lemma II: 1 [L1aCh,(s)ds <3,
solution [7 in the ball

S]_ :{(/I cX: ”U""’} ||x<%}
Furthermore, the iteration procedure defined by
U =4 +A(Un-1, Un-1)

converges to(/ for every Uye Sy,

Eq. (10) has a unique

The convergence can easily be seen to be uniform and
pointwise (see Lemma III of Reference 1). We omit the
details here.

We now know that we can solve Eq. (10a) iteratively
to obtain (/. To recover X(z) and Y(z) from Eqs. (5) we
must first obtain U; and U, from U] and U, [Egs. (9)].
Unfortunately, A(s) is not an invertible matrix. There-
fore, we describe below the scheme which can be used.
At the same time, this scheme provides the analytic con-
tinuation of {/ to the rest of the complex plane.

In other words, we wish to show that the solution of
Eq. (10) referred to in Lemma III can be used to obtain
the matrices Uy(z) and U,(2) satisfying Eqs. (6). More-
over we shall prove that these matrices are analytic for
Rez =2 0. To this end let us now state

Lemma IV: B ({ =[0,, U,] is the unique solution to Eq.
{9) in the ball 8, for f'1ACH,(s)ds <3, then for ze €

det[l-— J: f/,(s)zi
Proof: Since [/esi and "}"x< %, we have
32100 = Tl > Ml = 17 e
Thus we have
471 < 1.
Hence

1Wll, <1,

Sds]#O, Rez20, i=1,2. (11)

i=1,2.

Now let z=a +i8, @ = 0. Suppose for some value of 2z

—;ds)zo, Rez>0, i=1,2.

L. z
det(l— J; U‘I(s);_r

This would imply that there exists a nonzero vector ¥

such that
1. ZB
L () =2

where here 'Yl is a vector norm consistent with It 11,
This last relation yields

f 1,M14(s)
o+ g2

1/2
< [ Biiuts) (i) as

< [ 13,1l u(s) ds (for a= 0)
1]

II\IIII

(¥l <

ds

ats 'f’lﬁ

=10l <1
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which is a contradiction. Thus the inequality (11) must
hold. This completes the proof of the lemma.

Now define
1 2 .
Ul(z)—(l_ /(; Uz(s)‘Z T ds) (12a)
and
1, 2 .
Uz(z)—(l— j; U1(3)Z +sds> , {12b)
where (/ = [T, U,] is the unique solution of Eq. (10) re-

ferred to in Lemma IV. The matrices Ui{z) and U,(z)
are analytic in the complex z plane cut along [- 1, 0]
with (possible) poles at those values of z for which

1A z _ .
det[f—];Ui(s);_—Sds]—O, i=1,2.

In particular we observe from Lemma IV that U, (z) and
U,(z) are analytic in the complex z plane for Rez = 0
(2#0). Furthermore, we have

Lemma V: The matrices U(z) and U,(z) defined by
Egs. (12) satisfy Egs. (6).

Pyoof: For those values of z such that

i z
det(l—fo U,.(s)z+sds>¢0,

Uy(z) and U,(z) satisfy

1
. hnd V4
Uy (z)=1 +J’0 Uy (2)Uy(s) ngs (13a)
and
1
_ - z
Uy(z) =1+ fo U,(s)Uz(z)Z—+§ds. (13b)
We then need only to prove that
sA(s)Z U (s) = Ty (s), se]0,1]
and
Uy(s)2A(s)5C = Uy(s), selo,1].
However, from Lemma IV, we note that Eqs. (12) are

well defined for z € [0, 1] and
ds \?
=z4a(2)2 (1 zfo U(sz+s)

zel0,1]

TA(2)2CU(z) =
= [}l(z))

L ds
P
C—(I—z J; U1(S)Z+

~

=U,(2), zel0,1].

and

Uy(2)zAa(z) s

s)'le(z)z-lc

This completes the proof.

The matrices U;(z) and U,(z) are analytic in the left-
half complex z plane except for a cut along [-1,0]and
(possible) poles at those values of z for which detU,(z)
and detU,(z) vanish. In this regard, we have

Lemma VI: If Uj(z) and U,(2) are defined by Egs. (12),
then
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detUst(- v,) =detU;' (- v)) =0,
Rev;=0, j=0,...,d-1, (14)

where we recall that +v;, j=0,...,d-1 are the zeros
of detA(z).

Pyoof: From Lemma V, U,(z) and U,(z) satisfy Eqs.
(6), but by considering

(U5 (2) = TNUN = 2) = 1] = 22 [} ds [}t £A(s)ZCU(s)
XUt za@zCl(z + s)(z - H)]?

one can show that U;!(z) form the Wiener—Hopf factori-
zation of A(z) (cf. Ref. 6),

U;Y(2) Uil(- 2) =z-A(z)=-1C, (15)

Since A(2) is even in z, we must have

detU;' (v )detUi' (- v,) =0, j=0,...,d=1, (16a)

and

detUs' (- v))detU;*(+v,) =0, j=0,...,d-1. (18b)

The lemma now follows from Lemma IV.

We note that from Eqs. (14) and (16) if v; is purely
imaginary, then

detUs}(+v,) =detUs' (- v,)* =0,

in contradiction to Lemma IV. We thus have

Covollary to proof of Lemma VI: If [1NACIi,(s)ds
<3, then there are no purely imaginary zeros of
detA(z).

We summarize the results of this section with

Theovem I: It [1ACI,(s)ds <%, then the matrices
Uy(z) and Ug(z) given by Egs. (12) satisfy Eqs. (6) with
U =[U,(s), Uy(s)], s[0, 1], being the unique solution to
Eg. (10) in the ball S;. Furthermore, U;(z) and U,(z)
are analytic in the complex z plane cut along [- 1, 0] ex~
cept for poles at -=v;, j=0,...,d -1 and factor the dis-
persion matrix A(z) according to Eq. (15).

li1. ANISOTROPIC SCATTERING

The procedure presented in the preceding section can
easily be generalized to the case of anisotropic scatter-
ing. The transport equation for a degenerate scattering
kernel of the form

M
Clu, u’)=§A,-(u)B,-(u’>

has been studied by Larsen and Zweifel.'? The nonlinear
integral equations were written in this reference as

— 1 -1 l ds
X(-— Z)—I—Z L Y (— S)JZ;;B(SOJ)IIA(SGj)ETs (17&)
and
1N ds
Y(-2)=I-2z 25 Blos ) LLA(so)X (- s)z T (17b)

0 J=1

Here, X and Y are NM XNM matrices (N is the number
of groups and M is the order of anisotropy), 4 is an
NXNM matrix defined by
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‘4:(141‘42 .. 'AM)

b

and B is the NM XN matrix defined by
B = (BB} - B)).

Also, I; is an NXN matrix for which the element in the
jth row and jth column is unity and all other elements
are zero. (We are discussing only the solution of the

X and Y equations in this paper; the reader curious as
to the reason for the introduction of such a cumbersome
structure should consult Ref. 12.) For technical reasons,
it is convenient in the anisotropic scattering case to de-
fine the A matrix slightly differently from that used in
isotropic scattering. Specifically the matrix is defined
by

Mz)=I-z [ B(s)57 (2l - £75)A(s) ds.

Then the X and ¥ matrices which satsify Eqs. (17) fac-
tor A(z) according to Eq. (2).
The procedure followed in Sec. II can equally well be
applied to Egs. (17). In particular, if we define
X -2)=Vi(2) and YY-z2)=V,(2),

Egs. (17) can be written as

1 ds
Viz)=I+2z f Vl(z)Vz(s)R(s)Z+ (18a)
0 s
and
1 ds
Vz(z)=1+zfR(s)Vl(s)Vz(z)z+ , (18b)
0

where we have defined
R(s)= 1211:,0 B(so));A(s0;).

If we now make the transformation
Vi(s) =R(s)Vy(s), se[0,1]

and

Vy(s) = Vy(s)R(s), s<[0,1]

we can write the single equation for [/ =[Vi, V;] e X,

V=7"+AWl", 1/, (19a)
where
+'=[R,R]eX, (19b)

and A is the bilinear form given by Eq. (10c). By the
analysis of Sec. II we see that if 17 iy <3, i.e., if

S IRIy(s)ds <5,

then Eq. (19) has a unique solution & in the ball S,
given by

So={l"eX; /" = Fllx<3zh

We now define

1. z -1
Vl(Z) :(1 —j; VZ(S)E'*'_S ds>
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and



1 . z .
Va(z)=<1-£ Vl(s)mds>1 (20b)

and state from the results of Sec. II

Theovem II: If [IRN,(s)ds <3, then the matrices
Vi(z) and V,(z) given by Eqs. (20) satisfy Eqs. (18) with
V' =[Vy(s), V,(s)], s€|0, 1] being the unique solution of
Eq. (19) in the ball S,. Furthermore, V,(z) and V,(z)
are analytic in the complex z plane cut along [~1,0],

except for poles at —v;, j=0,...,d~1, and factor the
dispersion matrix A(z) according to

Vo(2) Vy(= 2)A(2) =1, (21)
IV. DISCUSSION

In Sec. II, the transformation from the set [Ul, Uz] to
(71, U;] is made. This is a technical convenience, and
one could just as well work with Egs. (6) for [U;, U,].
However, in Sec. IIl, where anisotropic scattering is
considered, we have not discovered a convenient way
to work with the unprimed quantities. The transforma-
tion almost seems unavoidable in that case.

We note, further, that in the solution to either Egs.
(6) for {/ or Eqs. (10) for //’ one need only obtain the
solution for the ith row of U;(s) and the 7th column of
Uy(s) for 0< so; <1, If the solution is desired for the
entire range of s, 0<s <1, or for that matter in the
remainder of the complex plane, one only needs to carry
out the analytic continuation according to Egs. (12).
However, for the solution of the transport equation, ®
one needs only the values of U; and U, for the restricted
range of [0, 1] described above and at the discrete eigen-
values - v;, 7=0,...,d-1.

Finally, we address ourselves to the question of gen-
eralizing our results. If p is the dominant eigenvalue of
the nonnegative matrix £-'C, the inequality p <3 is the
condition that the infinite medium be subcritical.'® How-
ever, we note that

p<ll[toa@)ztCdslly < [HIaClly(s) ds.

If we wish to discuss the general case of infinite medium
subcriticality for the isotropic scattering case, then the
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norm condition in Theorem I is too strong, since there
may be some systems which obey the infinite medium
subcriticality condition but not the norm inequality in
Theorem I. A similar argument also applies to Theorem
11 in the case of anisotropic scattering. Although it
might be possible, by appropriately defining norms, to
extend the results of Sections II and III to all subcritical
parameters, a more fruitful procedure seems to be in-
dicated. That is to try to find a transformation similar
to that introduced in Ref. 1 to extend our results to all
systems, supercritical, critical, and suberitical. That
is the problem that we are currently pursuing.
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The first part of this work concerns a thorough study of both global and local field equations that govern
deformable (not necessarily linear elastic) ferrimagnets and antiferromagnets from a phenomenological
viewpoint. The main tool used is a generalized version of d’Alembert’s principle, valid for both reversible
and irreversible phenomena, simultaneously with the invariance requirement provided by the so-called
objectivity and applied a priori to generalized internal forces which represent the various interactions. All
interactions taking place in such media are thus given a phenomenological description and are introduced
via the duality inherent in the method. The development follows a rational and deductive mathematical
scheme in which the notion of topological linear space of velocities plays a predominant role, so that
particular cases follow by selecting the appropriate member of this space. In the following companion paper
the allied thermodynamics and a thorough discussion of the relevant constitutive equations that follow
therefrom are given. The formulation so obtained will allow the consideration of slight perturbations

superimposed on bias fields.

1. INTRODUCTION

The aim of this paper is to present an attempt (thought
successful) at a “rational” phenomenological approach of
of the theory of ferrimagnetic and antiferromagnetic
continua. Here “rational” must be understood in the
sense that the development is made according to a
deductive scheme, starting from well-accepted facts of
microphysics, using first principles of mechanics,
electromagnetism, and energetics, and developing from
the general cases to particular ones. That is, linear
elastic ferrimagnetic and antiferromagnetic solids are
obtained as special cases of the exact nonlinear theory
of elastic ferrimagnets, which themselves correspond
to specific constitutive assumptions made to close the
differential system of balance equations.® The interest
for such a deductive scheme is manifold. First, it
allows us to give a precise statement of all the simplify-
ing assumptions made in obtaining the equations at all
degrees of approximation. Next, as recently emphasized
by Baumhauer and Tiersten,? the initial study of the
exact nonlinear case allows one to consider from the
start the correct rotationally invariant combinations of
deformation measures and physical fields, or of their
rates, which show up even in the infinitesimal strain
theory (see, for instance, the spin—lattice relaxation
thus obtained in Part II), and are in fact necessary if
one desires to study superimposition of slight (adiabatic
or not) perturbations on bias fields.

With regard to the general method used to obtain the
field equations, the following remark is in order. As
already remarked in a previous paper of ours,? one
mainly uses either one of the following methods in order
to construct phenomenological theories of continuous
media in interaction with physical fields such as elec-
tromagnetic fields, the magnetic spin field, and the
electric polarization field: (i) to consider a nondissipa-
tive continuum and derive both field and constitutive
equations from a variational principle of the Lagrangian
or Hamiltonian type, once the functional dependence of
the relevant potential (e.g., internal energy, enthalpy,
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or free energy) is specified, the peculiar class of
materials being selected from the start; (ii) to construct
an ingenious model of interactions, thus providing the
form of the terms to be added to the classical balance
laws, the constitutive equations being deduced and re-
duced to manageable forms in a second step. In recent
papers®=® we however proposed a third method, already
favored (but not in the same and systematic fashion) by
Penfield an Haus,” and somewhat more formal than the
preceding ones but, by the same token, much more
powerful and with a wider range of application, namely,
the method of viriual power (and not work) extended to
continuous media and dynamical processes. It may be
referred to as the use of d’ Alembert’s principle. The
new point however is that this principle is used simul-
taneously with the now well-accepted requirement of
objectivity (or material frame indifference), thus yield-
ing the straightforward satisfaction of the so-called
axiom of virtual power of internal forces® (after which
the virtual power of internal forces vanishes identically
in a virtual velocity field that “rigidifies” the material
continuum and “freezes in” the interactions). The ap-
plication to the theory of deformable ferromagnetic
media within the framework of quasimagnetostatics® has
shown how elegant, powerful, and simple this method
proves to be. Elastic ferromagnets which exhibit special
surface magneto-elastic couplings (via second-order
strains and hyperstresses) have been studied in the like
manner.® It ig to be noted that no constitutive assump-
tions need be made to start with—the medium may be

a deformable solid, a fluid or a continuum with an inter-
mediary behavior with hereditary effects—and the theory
applies to arbitrary thermodynamical processes in con-
tradistinction to, for instance, Hamiltonian formulations
germane to the description of thermodynamically
reversible processes. Furthermore, the building of an
involved model of electro-magneto-mechanical inter-
actions is here avoided.

By clearly distinguishing between internal, external,
prescribed, and inertial forces and requiring the objec-
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tivity solely for the internal forces which, from the
phenomenclogical viewpoint, represent inferactions that
take place within the material continuum, be they of
purely mechanical nature (e.g., intrinsic stresses) or
of other nature (e.g., interations between neighboring
magnetic spins), the method allows one to show, without
studying peculiar constitutive equations, that all inter-
actions participate in the total (i.e., Cauchy) stress
tensor. This essential property applies not only to
thermodynamically recoverable phenomena, but also to
dissipative phenomena. When applied to elastic ferro-
magnets this property permits one to show that the
spin—spin interactions and the spin relaxation due to
spin—Ilattice interactions intervene not only in the spin
precession equation, but also in the balance of linear
momentum, along with the usual elastic forces and the
viscosity processes in a rotationally invariant manner.®
These results are extended to ferrimagnets in Part II
of the present work.

In the present paper we propose to apply the same
method to the more general case of elastic ferri-
magnets, the case of elastic antiferromagnets being
deduced as a special case. So far, no phenomenological
theory of a similar degree of generality and rigor, built
up in agreement with all principles of modern continu-
um physics, has been proposed. The only attempts at
a theory of linear elastic antiferromagnets are those of
the Russian school,'*~!2 which do not describe the above
mentioned couplings. The basic ingredients of the
present approach are: (i) the principle of virtual power
in the above-recalled generalized form, (ii) the first
and second principle of thermodynamics in global form
(iii) Maxwell’s equations. The model used for the
magnetic properties is the multimagnetic-sublattice
model initiated by Néel!®, and specialized to the case
of a two-magnetic -sublattice model when dealing with
antiferromagnets. Although there are no difficulties of
principle to construct a fully dynamical theory (com-
pare Refs. 5 and 14 for ferromagnets and dielectrics},
we shall consider for the sake of simplicity the frame-
work of quasimagnetostatics in insulators, since we are
mostly interested in applications in the magnon—phonon
frequency range, far outside the optical range. Thus
electrical polarization is discarded. For the essentials
of the theory of rigid ferrimagnets and ferrites the
reader is referred to several monographs and
reviews, 5%

The notation, quasimagnetostatic fields and the re-
lated energetic identities, and the “kinematics” of
magnetic sublattices are recalled in Sec. 2. Local and
global balance laws for ferrimagnetic deformable media
are deduced from the principle of virtual power alone in
Sec. 3. In the Appendix it is shown how an ingenious
model of three interacting lattices (one crystal lattice
and two magnetic sublattices) can be used to recover the
case of magnetically saturated deformable antiferro-
magnets. In the companion paper numbered II the
macroscopic thermodynamics (following Coleman’s
axiomatics) is given as well as the constitutive theory
that follows therefrom for nonlinear elastic antiferro-
magnetic insulators. The special case of infinitesimal
strains is then deduced. Simple dissipative processes
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are studied with the help of the Onsager —Casimir theory
of irreversible processes, from which follow the spin
relaxation contributions for large or small damping in
the case of deformable antiferromagnets, Remarks
pertaining to the case of rigid ferrimagnetic continua
are made by way of conclusion.

2. PREREQUISITES

2.1. Motion, deformation field*'

A. As a rule we use the standard Cartesian tensor
notation in rectangular coordinate systems, the sum-
mation convention over repeated indices being
understood. The direct (dyadic) notation is used when
there is no ambiguity. Three-dimensional Euclidean
space E® is referred to two orthonormal frames {gk}
and {G.} (k,K=1,2,3), respectively in the present
configuration K, with matter density p, at Newtonian
time ¢, and in the reference configuration K, with
matter desity p,, at time ¢,. The motion of a continuous
{deformable) media is described by the following dif-
feomorphism of class C™ (m = 2) in J,, an open,
bounded, simply connected region of E®—with smooth
boundary /) of unit outward normal n—occupied by a
material body A at time ¢ in its configuration K:

x=XX,?

where x and X are Cartesian coordinates in K and K|,
respectively. A superimposed dot indicating the usual
material time derivative, we have

2.1

dA _; 9A
a8 _A=22 L (v 2.
i A=—r-+(U A (2.2)
for any tensor-valued field A(x,t), where
aX (2.3)

U=3r 1y
is the classical velocity field. The velocity—gradient
tensor, the rate-of-strain tensor, the rate-of-rotation
tensor, and the vorticity vector are defined by

(VU)i,': U,; =D, + Q” , (2.4a)

Dy=Uq ,»,=3U,,+7, ), (2.4b)

QUEUH.Hzé(Ut,j‘U ), (2.4c)
(

j 'i

2= - 36y, 0, = 3(VXU),, 2.4d)
respectively, ¢, is the permutation symbol. The diver-
gence of tensors is here taken on the last index, e.g.,
(divt), =¢,, ;.

The Jacobian determinant of the motion (2. 1) is given
by
J=p,/p: (2.5)
this is one form of the continuity equation (in K,), the

equivalent statement in K being given by either one of
the following well-known forms:

%, 9-(pU)=0 inD. (2.6)

b+pth: 0, 37
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B. The usual differential equation of a rigid-body mo-

tion (Killing’s theorem) is expressed by
D,,=0 2.7

at all points x< /), and for all times. The integral of Eq.
(2.7) reads

;cj =Q,;()x; + ¢, (1) (2.8)
where ¢ is a time-dependent vector and Q is a fime-
dependent proper orthogonal tensor, i.e.,

T T
QAR =1, Q “—"Q’l, detQ=+1. (2.9)

Coordinate transformations of the type (2.8) play an
essential role in the subsequent development, when they
are considered as aclive transformations, i.e., when
they represent the motion of a 7igid body 3. Then the
associated velocity field, described in K, is given by

U,x,0=T,t)+2,,()x,, (2.10)
wherein
5i.i:0’ ﬁu:‘ﬁjn Qy; =0, (2.11a)
gij:ékiQkﬂ Ei:éu (2.11pb)

at all x€/),, where [, is the closure of /);. Equipped
with, for instance, the norm of uniform convergence,
the linear space spanned by all velocity fields (2.10)

is a vector-valued topological linear space (T.L.S.) of
dimension six (three parameters defining the degrees
of freedom of translation and three parameters defining
the degrees of freedom of rotation, these parameters
being uniform throughout the rigid material body, but
possibly time dependent) called the distributor space of
rigid-body motions, C(/,) for the body 4.

Geometrical objects A(x,#) whose tensor components
transform tensorially with respect to the transformations
(2. 8) (considered as passive point transformations)
are said either to be objective or to satisfy the so-
called principle of material frame indifference. In par-
ticular, Ulx,s) and Q,,(x,¢) (for a deformable or rigid
body}, and the material derivative of an objective tensor
field are not objective tensor fields, whereas D, (x,¢)
is an objective tensor field. Of particular importance
for the remainder of this work is the objective time
derivative known as the Jaumann or corotational de-
rivative,? noted D,. For a vector field A(x,7) and a
second-order (in general not symmetric) tensor field
Ax,t) we have

(DJA)IEAt - QUA/: [(;_l _QX>AJ ’

H

(2.12a)

(DA =A ;= A 1~ A - (2.12D)
For A=VA={4, ,}, it can be remarked that the following
quantity

(D, VA),, + A4, D, =(4) ,-2,4

1r kg (2.13)

is also objective and, moreover, is linearly independent
of D
i

Finally, we say that a vector field A(x, ¢) is frozen in
the deformable matter if and only if
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D,A=0. (2.14)

Indeed, if this equation is satisfied, then Eq. (2,12a)
says that the vector field A rotates at the same local
rate as the deformable matter.

2.2. Quasimagnetostatic fields®

Let B, H, ®, M and u =M/p be the magnetic induction,
the magnetic field, the magnetic scalar potential, the
magnetization per unit volume, and the magnetization
per unit mass in K at time ¢. Then, in Lorentz—Heavi-
side units, Maxwell’s equations for magnetostatics
read:

H=B-M=-Va, (2.15)

Vi -V-M=0 in/y, (2.16)
and

[6®/an] + M+ n=0 on 3., 2.17)

where the symbolism [ -+ ] indicates the jump, 3/0n
=n-V, and the superscript i» means the value on the
inside face of 30;.

The ponderomotive force—the arbitrariness of which
must be emphasized—and couple acting upon the unit
volume element of magnetized matter in D¢ read

fem - (VB)+ M,
cem — MXB.

(2.18a)
(2.18b)

The electromagnetic stress tensor tf;“, the skewsym-
metric stress tensor Cg;“.—_ —Cf;“ associated with ¢®® and
the electromagnetic surface traction Te™ are introduced
via the equations

fom = divtem,  Cyi= - 457, (2.19)
f?;":H;B,-—(%Bz—M‘B)&“, (2. 20)
Cir=ge 0, Tim= -1y, (2.21)

so that the following global identity is obtained by in-
tegrating the first of Eqs. (2.19) over J¢:

) f°“‘dv+f30’1‘°'“da:0. (2.22)
t 13

No electromagnetic momentum appears in Eqs. (2.19a)
and (2.22) because of the magnetostatic hypothesis. Of
equal importance for what follows is a global energetic
identity for the magnetostatic fields obtained by special-
izing to the magnetostatic frame the general identity
valid for the electrodynamics of moving bodies derived
in a previous paper.!* We have

d .
2 Um(D,):-f (f°’“°U+pB°u)dv—f Ton U da,
dt D, )
(2.23)
or, on account of Eqs. (2. 19), (2.21), and (2. 4a),
d .
T Ue‘“'"‘(D,):fD (tgmD,, + C3rQ,, - pB= W dv,  (2.24)
t
where
U""""‘(Dt):fﬁ (3B - M*B)dv. (2.25)
t
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2.3. The magnetic sublattices and their ‘kinematics’’

Consider the following most general continuous de-
scription of the magnetization field in a deformable
magnetically ordered crystal below its magnetic phase-
transition temperature T_,. At each point x&/), in the
configuration X at time ¢ the magnetization per unit
mass is the vectorial resultant of the sum of v magneti-
zation fields B,, a=1,2, *-+,n, the magnetic sub-
lattices, arising at X from »n different ionic species
defined by unit mass in K, and having spectroscopic
splitting factors g, (in the usual paramagnetic case) and
gyromagnetic ratio v, =g,e/2myc (e: electronic charge;

m,: rest mass of the electron; ¢: light velocity in vacuo).

In accordance with microscopic considerations, a spin
density 8, per unit mass is associated with each u,

via the gyromagnetic relation
S,(X, ) =7, H, (x,8). (2.26)

The total spin intrinsic momentum per unit mass is
thus given by

§=278,=277y Wy, (2.27)
[+7 [+
whereas
(2.28)

W(x, 1) =20 o (x, ) =20 p (X, 1),

Equation (2. 1) has been used for writing the last
expression,

Of course, if all magnetic moments of the ions arise
only from spin, the g, are all equal to g, =2, the
splitting factor of electrons, and there is no distinction
between the different magnetic orders (e.g., ferro-
magnetism and ferrimagnetism, since, then, 8= ye'lu.
with v, = gee/ 2myc. In general, however, values of g
= 130881/ 134 8,! appreciably different from two are
often found, which result is important in discussing the
value of resonances. ? In the case of ferrimagnetic
bodies which is our concern, W, as defined by Eq.

(2, 28) may be different from zero in absence of external
field below the critical temperature. In the case of
antiferromagnetic bodies where T, = 6,(6, is Néel
temperature) two magnetic sublattices at least, u,,
a=A, B, need be considered for, below 6,, U as given
by Eq. (2.28) vanishes in absence of external magnetic
field (then y , and l, are antiparallel and of equal
magnitude). In all these cases it can be considered at
temperatures much below the corresponding critical
temperature that each magnetic sublattice has, at each
point xe J,, an amplitude independent of time. That is,

uu.ua:ui(x)) ui.p'a:()’ (2'29)

It follows from the second of these that each u, has
necessarily at x and instantaneously at time f a time-

evolution equation of the type
Bo=w XM, (2.30)

where w,(x,1) is the instantaneous and local preces-
sional velocity of g ,. Of course,

Wy B, =0 (2.31)
or, on account of Eq. (2.26),
Yo by o wy =0, (2.32)
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This equation means that s, is a d’Alembertian inertia
couple (i.e., a gyroscopic couple) which does not pro-
duce any power in a real precessional velocity.

Furthermore, for 6 <T_, it is often assumed that
the amplitude of each magnetic sublattice is uniform
throughout the specimen in the reference configuration
K, then it is said that each magnetic sublattice is
magnetically saturafed, so that, in supplement to Egs.
(2.29), the following constraints must also be satisfied:

by ¢ Mo = pi, = const; (2.33)
hence
(Fpsa/3X ) =0 or U, lqa; x=0. (2.34)

Lgo is the saturation value of g,. Then it is clear that
the most important problem to be dealt with is the
finding of the expression of w,(x,?) in function of the
different interactions that take place within the magnetic
body, and the finding of the angular distribution of the
magnetic sublattices at each point and for all times
throughout the deformable region 0., the value of | u,|
and | ¢l in function of temperature being not examined
in the present context.

If one assumes that each g, is an objective field, and
since M, is subjected to rotational motion (cf, Eq.
(2. 30), it is clear that relevant objective time rates of
M, and its spatial gradient vV, are provided by Jaumann
derivatives, so that in accordance with Eqs. (2.12a) and
(2.13) we define the following objective fields, which

prove essential in the sequel (a=1,2, ... ,n):
ﬁzaiz(DJu’a) :aqi"guuaj, (235)
ﬁrtiozij = (hrxi).J - Qlk“‘ak,j . (2.36)

3. FIELD EQUATIONS

3.1. The principie of virtual power for ferrimagnetic
continua

A. The generalized velocity field

Generalizing the formulation given for ferromagnetic
deformable bodies in a previous paper,* we consider
a generalized “motion” (set of primitive independent
variables) represented by the (n+ 1)-tuple of vectors

» 1} 3.1

in a ferrimagnetic continuum whose magnetic structure
is made of » magnetic sublattices. On account of Eq.
(2.1}, one can consider

XX, D=XX, ), 0, X, he=1,2, ... ,nh

The generalized velocity field of the present theory of
magnetomechanical interactions is assumed to be, at
each point x& /), an element of a 3(n+ 1)-dimensional
T.1.S (the topology being, for instance, that induced
by the norm of uniform convergence) such that, for
fixed ¢,

x,pa=1,2,...

(3.2)

&) ={Ux, 1), L (x,):a=1,2, ... ,n} (3.3)
Of course, for §<« T, , we can make use of Eq. (2.30)
so that, equivalent to (3.3), one may consider the fol-
lowing 3(n+ 1)-dimensional T.L.S.:

Gérard A. Maugin 1730



5(x)={U(x,t);wa(x,t):a=1,2, ey nh (3.4)

Following the terminology introduced in a previous work
work,? we consider a so-called first-order-gradient
theory with respect to »(x), as given by Eq. (3.3), for
deformable ferrimagnets. Thus » must be enlarged

with the elements obtained by taking the first spatial
gradients of its elements to yield a new 12(x + 1)-
dimensional T.L.S that we can write, on account of Eq.
(2.4a), as

V(X)Z{Ui,DU’ 7D ﬁa”(&"“)’j'

i,j=1,2,3;a0=1,2,...,nk (3.5)

It is clear that the introduction of the first spatial
gradients of U and i, allows us to give a better descrip-
tion of these fields in a neighborhood of a point of £,
(the underlying idea is that of Taylor expansion in a
neighborhood). No higher order gradients are considered
for the sake of simplicity and because they are in fact
unnecessary to obtain a realistic representation of
physical phenomena. Indeed, although the above rea-
soning concerns velocity (or, more generally, time-
rate) fields, because we shall apply these considerations
to the expression of various powers, the gradient U, ,
(or D,; and QU) allows one to describe, in terms of
deformation fields, so-called simple materials—accord-
ing to the term coined by Noll*®*—which include linear
elastic or classical Newtonian fluid behaviors as well
as nonlinear elastic and non-Newtonian fluids behaviors
(and intermediate behaviors such as viscoelasticity),
whereas the gradients Vi, allows us to describe, in
terms of the gradients of the fields f, present in (3.2),
the exchange and superexchange mechanisms arising
between neighboring spins within the same sublattice
and between spins of different ionic species in a phe-
nomenological manner, as will be shown below. The
fact that gradients of the magnetization offer, when
introduced as independent variables in the energy
density, a satisfactory phenomenological description
of exchange (Heisenberg) forces between neighboring
spins has been known for some decades, starting with
the pioneering work of Landau and Lifshitz®®, and is
also emphasized in Brown’s monograph.?’ A subspace
of v(x) and v(x) clearly is the restriction, C(J/)I, of
C(Dy) at a fixed x€ 4.

B. The virtual power of internal forces

A virtual power in general is a linear form on a set
of virtual velocities or, in other words, is the scalar
which results from the scalar product between a force
and a virtual velocity. However, internal forces that
represent phenomenologically interactions (in a broad
sense) and for which, ultimately, constitutive equations
must be given, are here supposed, in accordance with
the now well-accepted principles of modern continuum
mechanics, to be objective, i.e., form-invariant under
point transformations of the type (2. 8). Clearly, the
corrresponding generalized velncities which are the
cofactors of the generalized internal forces in the re-~
sulting virtual power must also be objective in virtue
of the trivial invariance of the scalar product. Then the
virtual power of generalized internal forces ought to be
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a linear form (or a linear functional when the whole body
is considered and thus requires space integration) on

a set of objective generalized velocities. Thusthe main
problem in every continuum theory approached by

using the principle of virtual power as starting point is
the building of this adequate set of objective generalized
velocities, called [/ ,(x) at each point x& /), the cor-
responding generalized forces being formally introduced
as cofactors and interpreted by means of dimensional
analysis and thanks to the duality inherent in the
method.

In the present case consider the primitive generalized
velocity field (3.3). It is a simple matter to show that
I/ .(x) is the quotient space

obj
Vo ®) =V (x)/C(D Y| . (3.6)

Thus [/ is a 12(n+1)- 6=6{(2x + 1)~-dimensional T.L.S.
A linearly independent (but obviously not unigue) basis
of elements which spans this T.L.S. is easily found as
follows. U is not objective and must be rejected (it is
not possible to combine it with other fields in the
present case in order to construct an objective field).
DU i_s objectiv.e and can be kept as such. Although @,
and 4, and Vi, are not objective, linear objective
combinations of these (which do not depend on D,;) can
be constructed. A straightforward solution is obtained
by considering the objective rates defined by Eqgs.

(2.35) and (2.36). Thus we can write (xc/J).):

V (x):{D.J.,STl ’i,j:1’2’3:a:1’25"

obj i

T (3.7

Introducing the set of cofactors (generalized internal
forces)

F @ =1{~0,,,fEB,,;, -B,;,11,i=1,2,3:¢=1,2, .. . ,n}

which spans the dual T.L.S of [/ . [in topological terms,
V., and 7, . are placed in separaling duality via the

ob§
bilinear form (A,B)=tr(AB"), Ac 7, Bel/ , T

int?
=transpose], the total power developed by the internal
forces of the present theory, for the spatial volume /),
at time ¢, is given by the following linear continuous
functional (an asterisk indicates a virtual field or the
value of an expression in such a field):

P D VE)

()

aij

:-th (0,5, =2 P" Byt + 23 By M3y ). (3.8)

aij

The signs are chosen, and p is introduced, for conve-
nience. The physical interpretation of the elements of
#at is immediate, The symmetric tensor 7y

represents intrinsic stresses, which would be present
even in the absence of magnetic effects. The !B, a=1,
2, .. .,n, have the dimension of a magnetic field. If
each magnetic sublattice is frozen in the material con-
tinuum, then m_ =0 according to Egs. (2.14) and (2.35).
Then the 'B,, do not participate in the power consump-
tion. One type of interaction is thus suppressed. It is
thus expected that the B, represent in some way an in-
teraction between each magnetic sublattice and the mate-
rial continuum, i.e., the crystal lattice. This is known
as the spin—lattice interaction, which yields the notions
of magnetic anisotvopy (since B, is linked to the re-
lative orientation of the g, with respect to the crystal
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lattice) and of magnetocrystalline enevgy. Furthermore,
in the present case concerned with ferrimagnetism, it
will be shown later on that the fields B, also account
for the intermagnetic-sublattice interactions not due to
the spatial disuniformities in the fields K,. The fields
B,y;» Whose dimension is (magnetic field) XML™, ac-
count for the spatial disuniformities in the magnetiza-
tion fields K,. They represent thus the short-range
intra- and intermagnetic -sublattice interactions. The
B,;; will be referred to as the spin-interaction (not
symmetric) tensors.

Consider now the following “virtual” situation: the
material body £ is “rigidified,” thus D,; satisfies the
Eq. (2.7), and all magnetic sublattices are frozen in
this rigidified body. Then (0 = empty set),
RV I = {Df, =0, @=0,T%, =~ 0}=0.

obj

(3.9)

The last expression in R[[/,]* follows from the second
and Eq. (2.11a)%, Then the corresponding virtual power
(3. 8) vanishes identically. Equations (3.9) are the dif-
ferential equations of the generalized rigid body motion
of the present theory: all interactions are frozen in.
This follows from the algebraic result: C(D,)|, NV, &)
=@, which follows from the definition (3.6). We ob-
viously have: C(J)=Kernel [ P,,], i.e.,

PEDy, v e()=0. (3.10)

This statement is none other than the expression of the
so-called axiom of virtual powey of internal forces ex-
tended to interactions other than purely mechanical
ones.

C. Other virtual powers

There obviously is no restriction of objectivity placed
upon the virtual power of external forces and inertia
forces (the latter are in fact never objective). External
forces are subdivided in two types: those forces which
act per unit volume within [+ and may be considered as
the result of at-a-distance actions, and those which
represent contact actions on the boundary 3D;of Dy at
time . The first type of forces is here prescribed in
the sense that their expression is provided by physical
theories foreign to continuum mechanics, per se, e.g.,
gravitation and electromagnetism. Forces of the second
type have numerically prescribed values (or the dual
condition in terms of velocities is prescribed) or they
are unknowns to be determined in the process of
problem solving. Let P, and 7, denote, respectively,
the power of volume at-a-distance forces and the power
of contact forces. In general we have (R: real line):

Py VPR, PR, (3.11)

However, we may discard in P(d) all contributions
which receive neither theoretical nor experimental sup-
port. For instance, if [/ is given by Eq. (3.5), we know
of no external field which may be the dual of (f.ti),j, SO
that this term is discarded, and we can write formally
on account of (3.11) and (3.5):

PE(D oy 1) =

- th f-U*+¢,DF +C, QF + Z;, pL o %) dv. (3.12)
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The volume force f may represent the action of gravity
if necessary. ¢,,=®,, and C,;=-C;, represent, re-
spectively, a double symmetric volume force (i.e., a
symmetric stress tensor) and a volume couple (or a
skew symmetric stress), We think it is logical and con-
venient to use here the ambiguity in the interpretation
of the actions of electromagnetic fields on matter, and
to consider them as giving rise solely to volume at-a-
distance actions. Thus, following previous works*® and
on account of Eq. (2.28) and of the form of Eq. (2.24),
we propose the following identification:

Cy=-1,, L

3

P, =—1, =B,V a. (3.13)

o

This means that, in contrast to Eq. (2.23), electro-
magnetic fields are introduced only in the form of
internal stresses and via the power developed by the
magnetic sublattices in such fields. Thus the EM fields
will not participate in /2, below [of course, the
alternate formulation using (2.23) can also be consi-
dered]. Equation (3.12) reads thus

p*((d)@ny*):f[) (£ U* - 157D, - 47, + pB - 1 ¥) dv.
t
(3.14)

As explicited by the second of Egs. (3.11), P, is con-
sidered to be a continuous linear functional on the space
(3.3) and not on the larger space (3.5). This results
from pure mathematical reasons for we assume that the
material body 8 has, at all times in the course of its
motion, a continuous tangent plane (i.e., no edges: for
instance, A may have an ellipsoidal shape), so that
terms involving gradients would disppear automatically
by using the surface Stokes theorem). Thus,

pfc)(aD t,v*)zf

3

(ToU*+25pT o+ B*)da. (3.15)
D, a
T is a surface traction not due to electromagnetic fields
(see an above-made remark). Clearly, the 7/ ,, whose
dimension is that of a surface distribution of magnetic
dipoles, are the surface “exchange” contact “forces”
that correspond to the internal forces Ba”. It is shown
hereinafter that they give rise to surface densities of
couples (the dual notion being that of pinning and orien-
tation of the magnetic sublattices at the bounding
surface).

Finally, two types of inertia arise in the present
theory. The first one is the classical inertia pU due to
the motion of the crystal lattice (viewed macroscopical-
ly). The second one is related to the intrinsic spin den-
sity associated with each magnetic sublattice. The latter
does not work in rveal precessional velocity fields—cf.
Eq. (2.32)—but it can be accounted for if virtual pre-
cessional velocities w} are considered, This clearly is
a tremendous advantage of the use of the virtual power
principle. Thus,

Pyiv-R,

&

a)

. (3.16)
(D,,u*):jD p(U-U* + 2. v, i, «w¥)da,
t o
where w¥ is related to £% by the equation obtained by
inverting Eq. (2.30) for virtual fields:
(H38,5 = oy by 0y = (Bo X B5);. (3.17)
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D. Statement of the principle

In a Galilean frame and fov an absolute Newtonian
chronology, the vivtual power of the inertia forces of a
mechanical subsystem S balances the virviual powey of
all other forces, internal ov extevnal, impressed on
the system, for any virvtual velocity field. Thus

p(a)*@hv*):p({)*(gt;y&;j)+/?’(kd)(01,Vk)+p’(.‘c)(80t,v*),
{3.18)

where the different expressions are provided by Egs.
(3.16), (3.8), (3.14), and (3.15), respectively. The
expression (3.18) is posited to be valid at all times ¢

in the course of the motion and deformation processes
of the material body A, for arbitrary virtual (or real)
velocity fields (3. 3) defined at all x& /), and satistying
the constraints (2. 30), and for arbitrary small regions
within /), and on aD,, provided these are sufficiently
regular. The remainder of Part I of this work is de-
voted to exploiting Eq. (3. 18) for various virtual fields.

3.2. Local field equations in deformable ferrimagnets

For every couple (U* w*) at all points of /), and 3,
after using Green—Gauss’theorem when necessary, and
on account of Egs. (2.30), (2.19), and (2.21), we obtain
the following results:

Theovem: The local field equations that govern the
motion and the interactions in a deformable ferrimagnet,
according to the multi-sublattice model and for a theory
of the first gradient in quasimagnetostatics, are:

*inD., t,,+f+m=pU,, (3.19)
*ondly, tyn;=T + T, (8.20)
and
* iy, b= Wy X kg, W= - Y B!, (3.21)
*ondls, €,,Bapny —pT gpltag=0, (3.22)
a=1,2,...,n, where we have defined
t; =0, +Za (Carsy1 * Bariyn)s (3.23)
aaijSpLBaip'aj! aaijz—Balkl‘Laj,k (3.24)
(no summation over &), and
B =B, + B, + 0B, ;- (3.25)

These equations are supplemented with the continuity
equation (2, 6) and Maxwell’s equations (2.16)—(2.17)
which, because of the essentially mechanistic nature

of the virtual power principle, cannot be deduced from
the latter. f*™ and T*™ as given by Eqs. (2.18a) and
(2.21) and (2.20) contain unknown fields. f, T and 7,
are in general data of a problem. It remains to formu-
late constitutive equations (cf. Part II) for the elements
of}ih on account of thermodynamical constraints (the
so-called thermodynamical admissibility and the dis-
sipation inequality). Furthermore, if the medium is a
heat conductor, then the energy equation which provides
the heat propagation equation must be adjoined to the
above-given equations (see Part II),
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The following remarks are in order:

(a) The Eqgs. (3.19) are the first Euler —Cauchy
equations of the motion, and Egs. (3.20) are the as-
sociated boundary conditions. The second Euler —Cauchy
equations, which express the local balance of moment
of momentum, are simply obtained by taking the skew
symmetric part of {,;,—the latter is the Cauchy stress.
That is, on account of Eq. (3.23),

t[tj]:§(0a[ij]+‘6a[ijl)' (3.26)
The general expression (3.23), which is valid whatever
the mechanical and thermodynamical behaviors of the
material are (the only restriction is that of first-order-
gradient theory, which, as remarked above, is not a
strong limitation), shows that, without studying peculiar
constitutive equations, the spin—Ilattice interactions and
the exchange and superexchange forces participate in the
the Cauchy stress, along with the usual intrinsic stress
(which can be shown to contain the same effects, but in
a symmetric combination), in a noniinear theory. In
particular, this remark holds true even if the fields
B, and Ba” present dissipative parts which contribute
otherwise to the spin relaxation (see Part II).

It must also be remarked that, while Eq. (3.26) de-
scribes the skew part of the Cauchy stress, it does not
contain (apparently) the intrinsic spins yJ'k,. The
transformation of Eq, (3.26) so as to exhibit the
presence of these spins is given below in Paragraph
3.4. Also, Eq. (3.26) simplifies in the case of magne-
tically saturated magnetic sublattices in a nonlinear
elastic ferrimagnet, for which it can be shown (see
Part II, Sec 4) that

5Mij]:0, Y a. (3.27)

The fact that the second Euler —Cauchy equations are
somehow contained in the definition of {;,—Eq. (3.23)—
results from the application of a rotational invariance
(objectivity) in writing P%,.

(b) If one defines a fotal stress tensor 7,; by

Ty =ty g (3.28)
then Eqs. (3.19), (3.20), and (3. 26) transform to

Tyi +f=p0,, (3.29)

Tyt =T, (3.30)

Tml:{:(aal4j1+5a:¢j|)‘cf?'s (3.31)

on account of Eqs. (2.19) and (2. 22). These condensed
equations however do not present any advantage in
problem solving, although they place in evidence the
external contributions f and T.

(c) Equations (3.21) for =1,2, . ..,n are the pre-
cession equations for the different magnetic sublattices
at temperatures much below the critical temperature
T... They assume the same form as in ferromagnetism
for a single magnetic lattice, and thus generalize the
usual Larmor precession equation by replacing the sim-
ple action of induction B by a linear combination of B
and of the fields representing the spin—lattice interac-
tions and the intra- and intersublattice interactions.
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Here also, B, and Ba,j are general constitutive de~
pendent variables which may present both thermodynam-
ically recoverable and dissipative parts. Equations
(3.22) are the associated boundary conditions which, for
zero T ,~no surface magnetic dipoles—take the obvious
form:

B,n+ru,=0 on 3, (3.32)

where A is an unknown such that A=—- u2(u,-8,-n).
This allows one to account for the different types of
boundary conditions imposed on B, or u, depending on
whether A equals zero, infinity or an intermediary
value. In fact, Eq. (3.32) is the exact boundary condi-
tion for the nonlinear theory (5, may be nonlinear),
which generalizes the condition derived in a painstaking
way in classical treatises.?®

3.3. Global balance laws in deformable ferrimagnets
A. Balance of momentum

Consider Eq. (3.18) and a virtual rigidifying velocity
field that belongs to C(J;)—Eq. (2.106)—such that

U¥x,t)=U,(t), U, =0 (3.33)
throughout /) ;, with
px=0, Vo, (3.34)

Then Eq. (3.10) is satisfied. On account of Eqs. (3.33),
and (2. 19) through (2. 20) we obtain

ﬁ[f (f-pr)dv+f T da)=0.
4 22, .
This is valid for any U. Thus, on account of M: 0,

d
— pUdv:f fdv+ Tda.
dat Dt Dt fagt

This is the global balance of linear momentum. No elec-
tromagnetic fields appear in this equation, for the
electromagnetic momentum is identically zero in quasi-
magnetostatics and the ponderomotive force is intro-
duced only via the total stress tensor. The latter is
introduced in the usual manner if Eq. (3.36) is con-
sidered as a first principle. Applying the usual tetra-
hedron argument, Eq. (3.36) yields Eq. (3.30) on ac-
count of Cauchy’s principle for stresses: T=T(n,x),

xe 3. £§ is hidden in 7,, as shown by Eq. (3.28).

(3.35)

(3.36)

B. Balance of moment of momentum

Consider Eg. (3.18) and a virtual velocity field that
belongs to C(J,) such that (in rectangular coordinates)

U’:‘(x,t):Q”(t)xj, Q”’k:O, X€0t, (3.37)

all the {4, being frozen in the deformable matter thus
rigidified. Then Eq. (3.10) is satisfied and Eq. (3.18)
takes the form

Q,l fz)t Uryxg —t65 + By M, ) dv

- Tyx;,+my)da
ab, !

+ [, pOyx, +8,,) dv] =0, (3.38)
1

in which we have defined the following quantities:
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My =020 Toribans (3.39)

Sy == 2618, = = Sy4» (3.40)

where s is the total spin density vector defined by Eq.
(2.27). Clearly, m, is a surface couple density as-
sociated with the contact exchange force arising from
the magnetic sublattices. It vanishes if Eqs. (3.32) are
satisfied.

Rema.rking that 77 = B M, after Egs. (2.18b) through
(2.21), and Q,, being arbitrary, Eq. (3.38) yields the
global balance of moment of momentum for the whole
body A in the form

a_ (U“x“+5“)d1/:fl) fixkpdv
dt q t

+ .I:D (Tyx,+my)da.  (3.41)
1

This is the usual form except for the contributions S,
and m,,, which result from ferrimagnetic effects.

Again, if Eq. (3.41) is postulated as a first principle,
then by applying to it the tetrahedron argument and
assuming Cauchy’s principle for my [m“:m”(n,x),

xc 3).], it is shown that there exists a third order ten-
sor (skew symmetric in its first two indices), M,,,, such
such that at 30,

Myn,=my,. (3.42)

M,,, represents the couple siresses arising from ex-
change and superexchange torques. Its relation with the
B, is established below in Sec. 3.4. Then the local
form corresponding to Eq. (3.41) is easily found to be

péij:M +T“].] (3.43)

ik
on account of Eq. (3.42) and of the local form of Eq.
(3.36)—i.e., Eq. (3.29). Assuming that 7, has the
expression (3. 28) and #{7;, being given by Eq. (2.19)?,
Eq. (3.43) reads

PSi; =M+t = CFF - (3.44)

This is the canonical form of an equation of balance of
moment of momentum,

Remark: the coupled applied, - C77, is not the
ponderomotive couple, but minus this couple. The rea-
son is that Eq. (3.44) in fact pertains to the total
magnetic lattice and not to the crystal lattice (on which
it is C;P that is applied). We thus witness the fact that
ponderomotive couples applied to the crystal lattice
are entirely transmitted to the spin lattices, the minus
sign of Eq. (3.44) resulting from the law of action and
reaction. This property is also used in the Appendix.

C. Global balance laws governing the magnetic
sublattices

Consider Eq. (3.18) and a special virtual velocity
field (3.3) such that

U (x, )= ﬁi @), ffm =0 throughout /), (3.45)
B = XX U, Vo*=0 throughout /);, (3. 46)
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where the uniform ¥ are otherwise arbitrary. That is,
U generates a translational rigid-body motion but the
W, are not frozen in the rigidified matter, Thanks to
this the fields (3.45)—(3.46) generate, first and anew,
the Eq. (3.36), and next, a global balance law governing
each of the magnetic sublattices. On account of Egs.
(3.35) and (3.46), the principle (3. 18) yields, for each
a,
wil [ ) (P b + PBLE X ) dv

t

~#£Q(Ba'n—pra)xuada]:0. (3.47)

Here B¥! is defined as in Eq. (3.25). Since the @* are
arbitrary and using the fact that M, =pH, and pdv =0,

we obtain the global laws (@ =1,2, ... ,n)
d -1
a J, Ye M, dv

t

:f (Mang“)dv-%f b, X(B,+n-pl,)da.
Dt aﬂt
(3.48)

This can be further transformed. Indeed, if the boundary
conditions (3.22) are satisfied, then the last contribu-
tion in Eq. (3.48) vanishes. Furthermore, consider the
case of magnetically saturated magnetic sublattices
(i.e., at very low temperatures). Then the condition
(3.27) is fulfilled and Eq. (3.48) reduces to
4 y;IMde:f M, X(B+LB,)dv+ M, X7, da
dt Dt Dt 3 Dt

(3.49)

on account of Eq. (3.25). This equation may be con-
sidered as the global balance law that governs, for the
whole spatial region [; at time t, the continuum rep-
presented by each magnetic sublattice in the case where
the latter is saturated. It is an angular momentum
equation since VB‘IMa is an angular momentum per unit
deformed volume. As such, this continuum responds
only to torques. These torques are of two types accord-
ing to the form of the right-hand side of the equation,
First, there are torques per unit volume due to the
action of the Maxwellian magnetic induction B and to the
interactions between the « magnetic sublattice and the
crystal lattice and between the o magnetic sublattice and
and the neighboring spins of the different ionic species,
B+ « {(the latter interactions are those which do not re-
sult from the disuniformities in the spin repartitions).
Second, there are surface torques, via TM which rep-
resent phenomenologically short-range actions and re-
sult from the spatial disuniformities in the magnetic
sublattices. Note that if the postulate of global balance
laws is considered as the starting point of the theory,
then the postulate of Eq. (3.49) clearly requires the
consideration of an ad hoc elementary model of inter-
actions (see the Appendix).

3.4. An alternate formulation

We show that Eqs. (3.44) and (3. 26) are compatible.
On account of Egs. (3.24), Eq. (3.26) can be written
in the form
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t[ij] = Z; (pLBo:(i *uo:j] -M aijk,k + 80{[{ fryrl ‘uajl)’ (3' 50)
[+3

in which we have defined the effective couple stress

tensors due to the magnetic sublattices by

MaukEBamtzl“ajl:“Majik- (8.51)
On account of Eq. (3.40)—written for each sublattice—
and of the algebra of ¢,;;,, Eqs. (3.21)! can be rewritten
as

érxu:BZf[fz”au- (3.52)
That is, with Eq. (3.25),
psau = B[iMaj] +pLBa[{u'aj] +Ba[il k,kl”aj]' (3' 53)

Summing over Egs. (3.51) and (3.52) and combining
the results with Eq. (3.50), we are led to the Egs.
(3.44) and (3.42) in which

sus? Saiss Mﬁks§ My, (3.54)
It is readily shown that Eq. (3.42) is none other than the
summation over « of the boundary conditions (3. 22) with
m,, defined as in (3.39). Of course, we have lost much
information in summing over & equations (3.21) and
(3.22), so that the latter are still needed to describe
the phenomena in a complete fashion. Hence, if a
statement of global balance laws is considered as a
starting point to approach the present theory, the global
balance laws governing the magnetic sublattices must
be postulated independently {(cf. Eqs. 3.48 and 3.49).

3.5. The principle of virtual power for a real velocity
field

Consider now the case for which the virtual fields U*
and w¥ are none other than the real fields, solutions for
real problems of the field equations deduced in Sec, 3.2,
Then the virtual power of inertia forces (3.16), for real
fields (no asterisk), reduces to

p(u)(Dt)v): I.<([) t)y (3. 55)

where K(/),) is the total kinetic energy for the moving
deformable body at time #, defined as usual by

K(Dt):§fa pUZdv.

t

(3.56)

The fact that magnetic spins do not produce any power
in a real precessional velocity field—cf. Eq. (2.32)—
has been accounted for in writing Eq. (3.55). Hence the
principle (3.18) reduces to the expression

K(D)=P (D, V) + PiayDe, V) + Py(@De,0), (3.57)

where all sets v, [/ and Vm correspond to real velocity
fields. When combined with the global statement of the

first principle of thermodynamics and with the identity

(2.23), Eq. (3.57) yields the so-called energy theorem

for the whole body (see Part II).

All the above-derived equations can easily be special-
ized to the case of deformable antiferromagnets by
limiting to two the number of simultaneously present
magnetic sublattices and assuming that, in absence of
an externally applied field below Néel’s temperature,
the two remaining sublattices K., and K ,, compensate
to yield a zero magnetization.
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4. CONCLUSION

Clearly, the above-derived equations for deformable
ferrimagnets and antiferromagnets are of the prime
importance in studying various problems in these media,
especially, coupled magnetoelastic waves and the
magnetostrictive and piezomagnetic effects. However, to
to fulfill that purpose, they need be closed by construct-
ing ad hoc constitutive equations for both thermodynam-
ically recoverable and dissipative phenomena, which
will be done in Part II. In the procedure we have to
formulate the relevant thermodynamics in which the
Egs. (3.57) and (3. 8) will prove to be key points.

The above study which, along with the contents of the
Appendix, is quite exhaustive as regards the field equa-
tions, has also shown, especially in Sec. 3.4, how close
to the recently formulated purely mechanical theories
of continua with microstructure (e.g., micropolar
media,”® media with couple stresses®) the theory of
elastic magnetically ovdeved materials proves to be.

In fact, the latter contains all mechanisms present in
such theories, e.g., intrinsic spins, couple stresses,
surface and volume couples, nonsymmetric Cauchy
stress. Nonetheless, an important remark must be
made in this regard. Whereas the magnetic sublattices
clearly respond to surface couples, the material con-
tinuum (i, e., the material lattice in the language of the
Appendix) does not possess the necessary mechanism
to respond to these couples. In this respect Eq. (A5)
below is typical. No mechanical couple stress tensor
appears in this equation (or in Eq. (3.26). As discussed
in another paper® for the particular case of ferro-
magnetism, this brings some constraint on the type of
boundary conditions regarding magnetic spins which can
be accepted. In fact, only that given by Eq. (3.32) is
allowed. In order to enlarge the choice with regard to
such boundary conditions it would be necessary, as was
done in elastic ferromagnets® to consider a finer de-
scription for the deformation processes, for instance,
a second-order-gradient theory so as to make clear the
surface magnetoelastic couplings arising from torques.
Although such an involved scheme still is manageable
in the ferromagnetic case, it may be reasonably con-
jectured that it would be rather complex in the present
case, so that we note this possibility only for memory.

APPENDIX: A MODEL OF THREE INTERACTING
CONTINUA FOR DEFORMABLE ANTIFERROMAGNETS

(1) We generalize Tiersten’s model®! for ferromagnets
to the case of deformable antiferromagnets. The case
of ferrimagnets could be treated along the same lines,
but the antiferromagnetic case exemplifies the method
in a clearer fashion, This is a model of interactions
which, it must be noted, is not necessarily issued
directly from microscopic physics, and there is no
necessary one-to-one correspondence between the usual
microscopic concepts and the phenomenological entities
introduced. Basically, it is a model of three interacting
simultaneously present continua, referred to as lailices.
One we call the material (or crystal) lattice (for short
ML), which is the usual material continuum of elasticity
theory and thus is the substrate of (nonlinear or linear)
elastic deformations and phonons (i.e., elastic waves).

1736 J. Math. Phys., Vol. 17, No. 9, September 1876

The other two continua are none other than the magnetic
sublattices A and B represented in a continuous fashion
by the mass magnetization fields M4y and g, that
depend on x and { in the deformed configuration X of the
deformable body A. The latter two continua support
mainly typical antiferromagnetic effects (superexchange
forces) and form the substrates of magnons, i.e., spin
waves. The crystal lattice and the magnetic sublattices
interact because magnetization affects the deformations
and, reciprocally, the deformations have an influence
on the distribution of magnetization in the antiferro-
magnetic body (the simplest effects being magnetostric-
tion and piezomagnetism). We examine the case of
magnetically saturated antiferromagnetic elastic insula-
tors within the framework of quasimagnetostatics.

The material lattice (ML) is governed by the global
balance laws of mass, momentum, and moment of mo-
mentum written in the usual manner:

pdv=0, (A1)

ar
Dt

a pUdv= Edv+f ’i‘(la,
dat 0 i)
t 5, t

% (xXpU)du:f (xx£+c)dv+f (xXT)da, (A3)
( )
h) 1

t

(A2)

t
where

f=f+fem T=T+Tem, (Ad)

and ¢ is the volume couple resulting from the interac-
tions between the magnetic sublattices A and 5 and ML,
The ponderomotive couple is included in the other terms.

From Eqgs. (Al), (A2), and (A4) the local field equa-
tions (2.6), (3.19), and (3.20) are deduced in the usual
manner, ML possesses only orbital angular momentum,
that is, no intrinsic spin, so that Eq. (A3) yields the
local form

€inlin T ;=0 (A5)

on account of Egs. (3.19) and (3. 20).

(2) Associated with the continua #,,, and K 4, are the
wmagnetic spin continua A and B, with densities 84,
=Y 4, and 8 5, = ¥5 5, Der unit mass. These con-
tinua possess only angular momentum by definition,
Since they possess no linear momentum, none of their
points can translate with respect to the corresponding
points in the material lattice. Therefore, it is clear that
that the spin continua expand and contract with the
material lattice and must occupy at all times the same
volume as the material lattice, so that their volumetric
behavior is governed also by Eq. (2.6). Similarly, the
conservation of linear momentum simply says that what-
ever force of magnetic origin is applied to a point of the
spin continua A and B, it is transferred directly to the
material lattice at that point. However, after their
definition, 8,,, and 8., respond only to torques. Then
it is assumed that each of the magnetic sublattices in-
teracts with the local material lattice by means of a
local magneltic field (referred to as the magnetic anisot-
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FIG. 1. Interactions in a deformable antiferromagnet.

ropy field in the body of the text), B, or B,

which exerts a couple per unit volume on its respective
magnetization field, M, or M,, by means of the
“recipe”: M,,XIB,, or M, X!B;,. These are torques

exerted by the local material lattice on the spin continua.

Since angular momentum is conserved, equal and op-
posite torques, B, XM,,, and LB 5, XM, ,,, must be
exerted by the spin continua on the local material
lattice. Then the couple ¢ appearing in Eq. (A5) is given
by

C="By XMy, + YBg, XM, (A6)
It follows from Eqs. (A5) and (A6) that
tun =" BuruM iy + *BipyuM gy, ;- (A7)

In addition to the couple caused by the material
lattice, whose recipe has been given above, each magne-
tic spin continuum experiences couples due to the

ordinary Maxwellian induction, i.e.,
c@ =M, XB, cif, =M, XB. (A8)

Furthermore, each individual magnetic spin of each
magnetic sublattice experiences from its nearest neigh-
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bors within the same sublattice (intrasublattice forces)
and from neighboring spins that belong to the second
magnetic sublattice (infersublattice forces), an action
caused by the exchange and superexchange forces.

Given the rapid fall over distance of this type of inter-
actions, we assume that they give rise in a phenomeno-
logical manner to contact, i.e., surface, actions. In
order to account for the forces exerted within each
sublattice, we consider a surface exchange contact force,
force, T' 4, and T’ 5, respectively, which, since the
spin continua respond only to couples, produces a couple
per unit area equal to M,, X7’ 4, or Mz, X7 5, depend-
ing on the sublattice considered. 7*, and 7/, have
the dimension of a surface distribution of magnetic
dipoles. Similarly, in order to account for the super-
exchange forces produced through intervening ions,
i.e., the intersublattice forces, we consider suwface
superexchange contact forces, 1z, and 77 , z,, which
produce couples per unit area M ,, % T'(BA, and M,

X7’ 45, On the A and B sublattices respectively. Since
the role of the A and B sublattices can be interchanged,
we necessarily have

T'(AB) =lom T'(BA)f (A9)
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where the symbolism =£°™= means that both expres-
sions which it relates must be jormally identical in the
interchange of A4 and B. All interactions thus far in-
troduced are sketched out in Fig, 1.

Analogous to Cauchy’s principle for surface trac-
tions, we assume that the surface fields T’(A,, T'(B),
7’ am, and 77, depend on the local normal at the
bounding surface and on no geometrical properties of
higher order {e.g., the local curvature). Then, on
account of the above discussion the equations of balance
of angular momentum for the two magnetic spin continua
are written in global form as

d -1
il PYITH g dt
= ju M(A)X(B+LB(A>)(77"+[0M(A)XT(A)da (A10)
3
i t
where

T(A)(n>£ 7—'(A)(“)+ T'(AB)(’?)~ (A11)

Applying the tetrahedron argument to Eq. (A10), we
obtain for any M, the linear relationship

T(An(n)rf’u%(mi,'”j (A12)

on 3)),, where /))(m” is a linear operator which may
obviously be referred to as the spin-inlevaction tensor
for the A sublattice. Analogous equations hold true for
the B sublattice. According to Eq. (Al1), 5 ,,,; here
represents both the intrasublattice and intersublattice
forces acting upon the A sublattice, each contribution
being placed in evidence only once constitutive equations
are specified (see Part II). It can however be remarked
that, similar to Eq. (A9), we must have

form
B(/m; T B(Bm'

The local form of Eq. (A10) is easily deduced with the
help of Eq. (A12). One obtains

(A13)

s=1 . L -1
Y i 7 EieFiay (B T By 0 B aremm)

. A=1
o eijk“mu,m/))m)km,

a similar equation describing the spin precession of the
B sublattice. The agreement with the equations derived
in the main body of the text is obtained if one uses the
results (3.27)—~derived in Part II—corresponding to
magnelically saturaled sublattices. Then the last term
in the right-hand side of Eq. (A14) vanishes and Eqs.
(A14), (A10), and (AT) take the same form as Egs.
(3.21) [on account of Eq. (3.25)], (3.49), and (3.26)
[on account of Eq. (3.27)].

(A14)

'If there exist fluids or suspensions which present the same
magnetic properties as the solids considered in this paper,
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then they satisfy the same balance equations, including the
spin-precession equations and the fact that the stress tensor
in general is not symmetric,

2J,C. Baumhauer and H.F. Tiersten, J. Acoust, Soc. Am.
54, 1017 (1973).

3G, A. Maugin, Lett. Appl. Eng. Sci. 2, 293 (1974).

4G. A. Maugin, J. Mec. 13, 73 (1974),

B, Collet and G,A. Maugin, C.R, Acad, Sci. B (Paris) 279,
379 (1974),

B, Collet and G.A. Maugin, C.R. Acad. Sci. A (Paris) 280,
1641 (1975),

P, Penfield and H.A. Haus, Electrodynamics of Moving
Media (M.1.T. Press, Cambridge, Massachusetts, 1968),
These authors do not consider any invariance in applying
their formulation of the principle of virtual power.

%G.A. Maugin, Physica 81, 454 (1975).

Paris, 1973), Vol. 1, p. 26.

%G.A. Maugin, Physica A 81, 454 (1975).

105 v, Peletminskii, Zh, Eksp. Teor. Fiz. 37, 452 (1959)
[Sov. Phys. JETP 37, 321 (1960)].

i1y @. Bar’yakhtar, M. A. Savchenko, and V,V. Tarasenko,
Zh. Eksp. Teor. Fiz. 49, 944 (1965) {Sov. Phys. JETP 22,
657 (1966)].

12A.1. Akhiezer, V.G. Bar’yakhtar, and S.V. Peletminskii,
Spin Waves (English translation) (North-Holland, Amsterdam,
1968).

131, Néel, Ann. Phys. (Paris) 3, 137 (1948).

14G. A. Maugin and B. Collet, C.R. Acad. Sci. B(Paris)
279, 439 (1974).

15¢, Kittel, Inévoduction to Solid State Physics (Wiley, New
York, 1971), third ed.,, Chap. 186,

165, Chikazumi, Physics of Magnetism (Wiley, New York,
1966), Chap. 5.

113, Smit and H. P, Wijn, Ferrites (Wiley, New York, 1959),

18w, P, Wolf, Rep. Prog. Phys. 24, 218 (1961).

197 Nagamiya, K. Yosida, and R, Kubo, Adv. Phys. 4, 1
(1955).

WE, A, Turov, Physical Properties of Magnetically Ordered
Crystals (English translation) {Academic, New York, 1965).

YA, C. Eringen, Mechanics of Continua (Wiley, New York,
1967).

23ee Ref. 8, p. 113,

BSee Ref. 14, and G.A. Maugin and A.C. Eringen, J.

Math, Phys, 13, 143 (1972).

M3, Foner, in Magnetism, edited by G.T. Rado and H. Suhl
(Academic, New York, 1963}, Vol. I

250, Truesdell and W, Noll, in Handbuch dev Physik, Bd.
111/3, edited by S, Fligge (Springer, Berlin, 1965}; pp.
60—63,

2%61,, D, Landau and E.M. Lifshitz, Phys. Z. Sowjetunion 8,
153 (1935).

2w, F. Brown, Magnetoelastic Interactions (Springer, New
York, 1966),

27 G. Gurevich, Magnetic Resonance in Fervites and
Antifervomagnets (in Russian) (Nauka, Moscow, 1973),

p. 140,

5. C. Eringen, in Fractuve: An Advanced Treatise, edited
by H. Liebowitz (Academic, New York, 1968), Vol. II,

pp. 621729,

39R.A. Toupin, Arch, Ration, Mech, Anal. 17, 85 (1964).

3, F. Tiersten, J. Math. Phys. 5, 1298 {1964); see also
Ref, 23 and the synthesis by the author: “Micromagnetism”
in Continuum Physics, edited by A.C. Eringen (Academic,
New York, to appear early 1976), Vol. III, Part III, pp.
221—312,

Gerard A. Maugin 1738



A continuum theory of deformable ferrimagnetic bodies. Il.
Thermodynamics, constitutive theory

Gérard A. Maugin

Université de Paris VI, Laboratoire de Mécanique Théorique associé au C.N.R.S., Tour 66, 4 Place Jussieu,

75230 Paris, Cedex 05, France
(Received 15 July 1975)

In order to close the system of differential field equations developed in Paper I, this article proposes a
rational development of the relevant macroscopic thermodynamics and of a constitutive theory. In
particular, by following Coleman’s thermodynamics, exact nonlinear constitutive equations for thermoelastic
antiferromagnetic insulators are formulated. According to the deductive scheme adopted in Paper I, the
important case of elastically isotropic antiferromagnets with a magnetic easy axis, and possibly endowed
with the property of weak ferromagnetism, is developed in detail by using approximations. In order to
supplement the description of thermodynamically recoverable processes and in accordance with the Onsager—Casimir
theory of irreversible processes, the constitutive equations governing phenomena such as viscosity, electric
and heat conduction, and spin relaxation, the latter either for strong or weak damping, are obtained.
Regarding the latter effect, it is shown, thanks to the formalism adopted in Paper I, that both viscosity and
spin relaxation participate in the Cauchy equations. The relaxation term of Gilbert is thus generalized to

the case of deformable antiferromagnets.

1. INTRODUCTION!

General local or global balance laws (independent of
the peculiar mechanical and thermodynamical behavior)
that govern the motion and the interacting fields in a
deformable ferrimagnet or antiferromagnet have been
deduced in Part I from a single principle, that of virtual
power applied simultaneously with the requirement of
objectivity as far as “internal forces”— the fields that
represent in a phenomenological manner the different
interactions—are concerned. The purpose of this second
part is to develop the relevant macroscopic thermo-
dynamics, which allows the construction of constitutive
equations for these “internal forces” for both thermody-
namically recoverable processes—in accordance with
Coleman’s thermodynamics?’—and irreversible process-
es—along the lines of the Onsager— Casimir theory of
irreversible processes. ® The constitutive equations thus
obtained permit one to close the system of differential
field equations built in Part I.

Having recalled the main results of PartI in Sec. 2
for the special case of deformable simple antifervomag-
nets, thus with a magnetic structure made of only two
magnetic sublattices, we postulate the global form of the
first and second principles of thermodynamics according
to the scheme of contemporary continuum mechanics.
Combined with the expression of the principle of virtual
power written for a 7real velocity field, these principles
yield the so-called theorem of the energy and the
Clausius—Duhem inequality, which proves essential in
the subsequent development (Sec. 3). Note that the
formalism developed in fact is also valid for a multi-
sublattice structure with more than two sublattices,
hence it is valid for the description of deformable fev-
rites. In Sec. 4, following Coleman’s thermodynamics,
exact constitutive equations are obtained for nonlinear
thermoelastic antiferromagnetic insulators, especially
when, at temperatures much below Néel’s temperature,
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each magnetic sublattice may be considered as satu-
rated. The equations thus obtained, although exact, are
in general quite unmanageable because all effects are
intricately mixed as a result of the nonlinearity, so that
approximations such as those of an expansion of the free
energy in its different arguments, and the case of in-
finitesimal deformations are given much attention in
Sec. 5. The different effects such as thermoelasticity,
pyromagnetism, magnetocrystalline effects, exchange
and superexchange forces, piezomagnetism and mag-
netostriction are thus placed in evidence. For the pur-
pose of illustration the typical case of an elastically iso-
tropic antiferromagnet with a magnetic easy axis and,
possibly, the property of weak ferromagnetism, is given
in detail. General dissipative processes such as vis-
cosity, spin relaxation, heat and electricity conductions
are looked upon in Sec. 6 in accordance with the classi-
cal theory of irreversible processes. Special attention
is given to spin-relaxation phenomena, which are seldom
examined in detail in ferrimagnetism and/or antiferro-
magnetism. In particular, the spin-relaxation terms to
be considered for strong damping in deformable anti-
ferromagnetis are proposed, which generalize our
earlier proposal®’ concerning the case of deformable
ferromagnets, By the same token, Gilbert’s expression®
is generalized to such media, and it is shown in a
straightforward manner that the spin relaxation partici-
pates in the Cauchy equation of motion, thus exhibiting
the fact that this dissipative process may cause the
damping of both magnon and phonon branches of the dis-
persion diagram of coupled magnetoelastic waves in
antiferromagnets, especially in the crossover regions.
Then an elementary perturbation scheme shows that the
generalization to deformable antiferromagnets of the
Landau and Lifshitz’s relaxation term” is valid for weak
damping. It must be emphasized that the rational form-
ulation of such coupled effects for a wide range of damp-
ing results directly from the methodology followed in
Part I (especially, the duality between spaces of
“forces” and ‘“velocities”).
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2. RECAPITULATION FOR DEFORMABLE
ANTIFERROMAGNETS

2.1. Local balance equations

The equations deduced from a generalized version
of the virtual power principle in Part I are here special-
ized to the case of deformable antiferromagnets whose
magnetic structure is built up of two magnetic sublat-
tices numbered o =4, B.® Let /), be the spatial region
of E? occupied instantaneously at time #, in its present
configuration X, by a deformable body 3. 3/), is the
corresponding bounding surface with unit outward nor-
mal n. The relevant equations of the phenomenological
description for insulators containing no free charges
(in quasimagnetostatics) are the following ones:

(a) Equations governing the crystal lattice:

# Continuity

p+pU,,=0 inJ),, (2.1)
# Cauchy’s equations
tij,s+fi +M B =pU; in[,, (2.2)
timi=T;=[tsTl; on 8)y; (2.3)
b. Equations governing the magnetic sublattics (&
=A, B):
A w==7eBES Xt inDy, 2.49)
By n+ A =0 ond)y; (2.5)

(c) Equations governing the magnetic fields (Lorentz—
Heaviside units):

vi$_V-M=0 in [, (2.6)

[0d/on] +M,,*n=0, on 3)y; 2.7
(d) Definitions (@ =A, B):

H=B-M=-V9, (2.8)

M=pu =aEM(a)=P§ Kays (2.9)

tij:gii +E (pLB(oz)[iiU’(a)j} _B(a)[ilki P‘(a)j],k); (2' 10)
a

2.11)
2.12)

B =B; + By +p Biarisiv
1P =H,B; - (3B’ -~ M +B),;.

In these equations the different symbols introduced bear
the following significance:

p: density of matter in K,

f: volume force (no magnetic efiects),

U: matter velocity,

t,;; Cauchy (nonsymmetric) stress tensor,

T;: surface traction of purely mechanical origin,
t;7: magnetostatic Maxwell stress tensor,

B: magnetic induction,

H: magnetic field,

$: magnetostatic scalar potential,

M: total volume magnetization,
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{: total magnetization per unit mass in X,

M («): magnetization of the a-sublattice per unit
mass in X,

Yo+ gyromagnetic ratio of the w-sublattice,

B{LL: effective magnetic induction acting on the -
sublattice;

0;;=0;;, “Ba, and B4, are respectively the intrinsic
stress tensor, the magnetic anisotropy field of the o-
sublattice, and the spin-interaction tensor of the a-sub-
lattice. Constitutive equations must be constructed for
these five fields (@ =A, B).

In writing the boundary conditions (2.5}, we have as-
sumed a zero surface exchange contact torque for each
magnetic sublattice (See Eq. 1. 3.32). A is a Lagrange
multiplier which can be said to measure the surface
magnetic anisotropy.® Depending on whether A =0 or
+ %, or an intermediary value, the boundary conditions
(2.5) contain all those which have been proposed in the
relevant literature.

In a finite deformation theory the classical motion,
solution of Cauchy’s equations (2.2), is given by the
general expression {(with a sufficient degree of
differentiability)

X =XpXg, t) (2.13)

where x,, #=1,2,3, and X, K=1,2,3, denote the
position respectively in X and in the reference configu-
ration X, defined at £=1{,. { is the Newtonian absolute
time. A superimposed dot indicates the material time
derivative 3/t +U-V; 8/an=n.V is the normal deriva-
tive. The symbolism { »++] indicates the jump across

30,

Of course, in absence of externally applied magnetic
field and of other perturbations, the sum given by Eq.
(2.9) must vanish at all points in /), below Néel’s tem-
perature, since we consider the antiferromagnetic case:

B=20H=0. (2.14)
o

2.2. The principle of virtual power for a real
velocity field

The following expression, that represents the state-
ment of the virtual power principle for real velocity
fields, has been established in Part I:

K(,) = Peis(De) + Peay(De) + Peey(3De).

Here the different contributions represent respectively:

(2.15)

# the material derivative of the total kinetic energy:

K(D) = [y $pUdv, (2.16)
t
# the power of internal forces:
Pi(Ded)=~ th[f’uDij"Zo}(DLB(M,-V%(M,-
(2.11)
~Barii M wilav,
the power of volume forces:
Puas(Di)= [ (€ U= 157U, 5+ pB - ) dv, (2.18)
t
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the power of contact forces here written for zero sur-
face exchange contact forces as

p(c)(aﬁt)=f30‘,r' Uda. (2.19)

The different objective!® time rates appearing in Eq.
(2.17) are defined by

Dy;=2(Us,;+Upd = Ui, ins (2.20)

Mari = Beari = b carss (2.21)

Eﬁz(amjE ( ari), 1= Qirbcarn, 19 (2.22)
where

Q4;=2(Uy,;= Us,0)=Uny - (2.23)

Finally, the following energetic identity for quasimag-
netostatic fields proves useful in the sequel (see Eq. I.
2., 24):

Um0 = E57U;,;- pB-4)dv, (2.24)
t

where U°™™ js the total magnetic energy in the mag-

netized body A at time ¢:

U™™Do=[ ) (2B~ M-B)dv. (2.25)
i

We are now in a position to construct the macroscopical
thermodynamics and constitutive theory that allows us to
specify the form of the fields 0,;, “B,,, and B,,.

3. THERMODYNAMICAL PRINCIPLES
3.1. Global statements

Let e, 2, q, 7, and 8 be respectively the internal
energy per unit mass in X, the volume heat source
(e.g., radiation), the heat influx vector through 3/),,
the entropy per unit mass in X, and the thermodynami-
cal temperature such that 6 >0, inf=0. The statement
of the first principle of thermodynamics for the whole
material moving body expresses the fact that the time
rate of change of the total energy, i.e., the sum of the
kinetic energy, the internal energy, and the magnetic
energy within the body, equals the time rate of change of
heat production to which is added the rate of work of
prescribed forces (i.e., only f and T participate in the
last quantity if zero surface exchange contact forces
are assumed), We thus set at time ¢

lk(Dt) +fE(Dt) + ifem"m(ﬂt) = Q(Dt) + P P)(Dt)’ 3.1

where

IE(Dg)=thpedv, 3.2)

Q(Dt)zfﬂtphdv—faﬁ q- nda, (3.3)
t

(3.4)

D)= [p £+ + T- Uda.
Peey(Dy) fOt Udv faﬂt Uda
Note that Eq. (3.1) is a postulate independent of the
special form of the virtual power principle (2.15).

The second law of thermodynamics is postulated here
in global form as

N(D,) = S(Dy)

where

(3.5)
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N = [p, pnde, (3.6)

S(Do=Jp ph/Odv- [, 6" q-nda. (3.7)
t ¢

Note that the entropy influx vector through 3/), takes
here the simple form 6-!q because we are in quasimag-
netostatics (i. e., the Poynting vector is not involved). !
The local form of the inequality (3.5) obviously is, for
sufficiently smooth fields,

p07.7—ph+V-q—9'1q°V930 (3.8)

at all internal points in /.

3.2. The theorem of the energy

Upon combining the expressions (2.15) and (3.1) on
account of Egs. (3.4), (2.12), (2.19), and (2.4), we
arrive at the so-called theorem of the energy, which
expresses the time rate of change of the total internal
energy in the form

E(D,) + Py D) =0(Dy). (3.9)

This being posited to be valid for arbitrary regions in
Dy, it yields the local equation of the energy on account
of Egs. (3.2), (2.17), (3.3), and of the continuity equa-
tion and Gauss’ theorem:

Pé=°i1Dw‘2 (PLB(a) ‘ rh(u)"'B(a)Hw?(a)H)- V.q

o
+ph. (3.10)
This yields the heat propagation equation when ¢ is
specified.

3.3. The Clausius-Duhem inequality

Substituting from Eq. (3.10) into Eq. (3.8), so that
h is eliminated, and defining the free (Helmholtz) ener-
gy per unit mass in X by

y=e-nb, (3.11)

we are led to the local statement of the second principle
of thermodynamics in the form known as the Clausius—
Duhem inequality'?:

~p@+n8) +0,;Dy;-23(p“Ba) * May =B aris Miaris)
o

(3.12)
-61q:Vo=0.

This inequality is the ground on which is built the follow-
ing development since, together with the constitutive de-
pendent variables 0,,, “B,,, and 8 ,,, it contains the
remaining constitutive dependent variables of the theory,
namely, ¥, 7, and q. All these variables are objective
as they should in fact be, as well as their respective
cofactors. The importance of applying the systematic
method used in Part I to construct the virtual power of
internal forces is here made clear, for it is the very
expression thus constructed that contributes, in a
ready-to-use form, to the statement of the second
principle of thermodynamics. If the medium were an
electric conductor with finite conductivity, then there
would appear a Joule contribution g + £ in the left-

hand side of Eq. (3.12), where ﬂ and & would be re-
spectively the conduction current and the electromotive
intensity in moving media, the latter being such that
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E=E+(1/c)UXB

where E is the electric field in a fixed Galilean
frame, 13

4. NONLINEAR THERMOELASTIC
ANTIFERROMAGNETIC INSULATORS

4.1. General case
A. Strain measures

Noting x;, x= 2 X;/0X and xy, ;= 3X,/3x;, the direct
and inverse deformation gradients, and remarking that
Koy =K (o)X, ) can also be written as

B =Hw X, 8 (4.1)

on account of Eq. (2.13), so that the gradients oy, x
are well-defined, one can construct the following ob-
jective fields which are scalars with respect to coordi-
nate transformations in the configuration X, but are
tensor-valued fields in the reference configuration K

Ex1 =50, x%:,0 - Oxz) =Erg, 4.2)
MEE W ia)i¥s, ko (4.3)
ML= b, kX, 1) 4.9
MEL= Beari, kb cari, . =Mk (4.5)
MEL = Biart, kb i, =M =M3%, (@ #B); (4.6)

Ey; is the usual Lagrangian strain tensor of nonlinear
elasticity. It is related to the Cauchy strain tensor Cgy
=x;, xX;,1 via the equation

Cyxr=2Ey; +6g1. (4.7
The reciprocal of C;, such that éMKCKL =06,;, is
easily shown to be given by

-1

Cur =Xk, Xz,;. (4.8)

m% and m%y or M%; are measures of the magnetization
sublattices and of the disuniformities of these magneti-
zations, respectively, expressed by convection in the
initial configuration K. The following scalars can be
defined from the vector fields p(,,, @ =A,B (no summa-
tion over a):

(4.9)
(4.10)

Bhe =M * )
LOP=liay s b =1, (@#p).

Whereas [ s, 1S a measure of the magnitude of each
magnetic sublattice, 1 in fact measures the angle

©*® between the sublattice directions at a given material
point at all times. The last equalities on Eq. (4.6) are
established by computing u?‘.‘f,m. Introducing m§ by

— .1
mg=p Xk, ;=Crrmi, (4.11)

it is readily shown that Eqgs. (4.9) and (4.10) can be

rewritten as
_ -1
Lh, =mEmE =meCyrmg, (4.12)
u = mm = memb = 8, (4.13)

Also, on account of Eqs. (4.4) and (4.8), Egs. (4.5) and
(4. 6) can be written in the form

-1 -
8
MEL=m%pCpome, M¥s=m%pCpemiq- (4.14)
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If each magnetic sublattice is saturated, then we have
(dsqe/2Xg) =0 for all . Thus,

Kari, kM ayi = 0. (4.15)

These constraints can be written in Lagrangian form
with the aid of Eqs. (4.4), (4.8), and (4.11). We have

mErme =0, (4.186)
We note that in contrast to the absolute scalar (4.10),
one can also form the following pseudoscalar which
changes sign by interchange of the roles played by «
and 8. Then we define (@ # 8), 1 being a unit vector field
defined at the same point as (., and W (s:

LW = (B eay X Beg) s 1== B2 M) == p*4(-1).

This quantity is useful in discussing the case of weakly
ferromagnetic antiferromagnets.

4.17)

One can also introduce the gradient of temperature in
K, via the chain rule of differentiation

6,k=0,:%;, k. (4.18)

For subsequent use it is of interest to compute the time
rate of the fields defined by Egs. (4.2)—(4.4). Noting

that Liyyi, x =Mari, %5, x and using Egs. (I. 2.9) and the
definitions (2. 20)— (2. 22), it is found that

EKL:D”xi'KijL, (4.19)
7.}1?‘(:[771(,,),-+D“u(a)j]xj.,(, (4.20)
W% =DM ayin+ Dislhcars, e lXi, 10,  « (4.21)

It must be remarked that the objective rates introduced
in Part I appear quite naturally in the above
calculations.

B. Constitutive equations

Thermoelastic materials are materials which are
described by a first-order-gradient theory (see PartI)
and have a free energy with the following a pviori func-
tional dependence:

l»bzl/)(xi,K; Haris ’J‘(Ot)i'KlB’G'K)' (4'22)

The same dependence is assumed to hold for the other
dependent constitutive variable n, o, I’B(a,, Ba), and
q, according to the working hypothesis of equipresence !t
In order that ¢ be an objective scalar it is necessary and
sufficient, following a classical derivation, ! that ¢ re-
duce to the following functional form:

Zp:i(EXLa 7"(12{) nz%ln 97 0,1()'

Assuming i to be sufficiently differentiable in its argu-
ments, the time derivative of ¢ is computed on account
of Eqs. (4.19)—(4.21). One obtains

(4. 23)

Z&Z[E%%:xj.llxi,xﬂ“Z‘}(%H(an"i.x
%%,LH(«H.K)}DH
_ _ (4. 24)
+Za> [(é%lef> Payi T (a—:q"%: xi,ij,K>9i(a)ij}
+§%—é+agi 9,.,( .
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Substituting from this equation into Eq. (3.12) and the
latter being posited to be valid for arbitrary elements
of the enlarged T.L.S. of velocities!®

Vobj@{é: 9%1(}7 (425)

according to Coleman’s axiomatics of the thermodynam-
ics of continua,!” we arrive in the usual fashion at the
following result:

Theorem: The constitutive equations of a nonlinear
thermoelastic antiferromagnetic insulator are:

39 —{ 3) 1
R051=0{%; X, gt Z’(am“ oyt +W K arda, x){ %ir, L

N (4. 26)
a,.

RLB(a): 5;32)_017(5}(’ (427)
aA

RB(a)u panﬂi Xi, LXj, K5 (4. 28)

o

nt 36 ° 4.29)

26, x

ql:xi.MéM(Elx’L, me, myy, 0,0 k), (4.31)

the latter satisfying the “continuity” condition (if éM is
assumed to be of class C! with respect to its argument
0,x)

(4.32)

as well as the remaining thermal dissipation inequality

q-Ve<0, (4.33)
and y being reduced to
D= (Exz, m% m§s, 0). (4.34)

No peculiar material symmetry is here assumed,
The left superscript R indicates that the constitutive
equations (4.26)—(4.28) are derived from the potential
¥, which, being a general function (that must however
satisfy some positiveness and stability conditions),
gives rise to a nonlinear behavior, in particular, to the
so-called hyperelastic behavior as far as mechanical
effects are concerned. Thus, apart from heat conduc-
tion, all phenomena here described are thermodynami-
cally recoverable. Equations (4. 27) and (4. 28) show that
FIB (4 and ®B,, are primarily determined by the mag-
netization sublattices and their disuniformities, respec-
tively, so that the interpretations conjectured in Part I
for the fields *B,, and f,, are corroborated by the
thermodynamical study. As far as elastic effects and
the contributions of magnetic effects to the Cauchy
stress tensor are concerned, a simple rearranging of
Eq. (2.10) on account of the results (4.26)— (4. 28) al-
lows us to put in evidence the different properties. In-
deed, call Rt” the thermodynamically recoverable
Cauchy stress thus obtained; on account of the results
obtained above it can be rewritten in the following sug-
gestive form:
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Rtu" tiy— E (PRLB(a)jH(a)i‘RB(amN(a)i.k),(4-35)

where Et,-j is the symmetric stress tensor defined by

Et” paEd) 1,KxfnL:Etji' (4‘ 36)
The latter may be called the elastic stress tensor, to
which ®¢;; would reduce in the absence of magnetic ef-
fects; it here includes not only purely elastic effects,
but also effects such as magnetostriction, piezomag-

netism, and exchange-strictive effects.

The decomposition (4. 36), which has been derived
only in the case of thermoelastic bodies, shows that in
contrast to what could be figured out from the original
(but more general) decomposition (2. 10), the spin—Ilat-
tice interactions and the spin—spin interactions (of ex-
change and superexchange origins) intervene in the
Cauchy stress not only via the skewsymmetric combina-
tions of Eq. (2.10), but also via the analogous sym-
metric combinations, so that the formula (4. 36) holds
true. Both the decompositions (4.36) and {2.10) can
further be simplified if the magnetic sublattices are
supposed to be saturated, i.e., of spatially constant
magnitude, a reasonable assumption at sufficiently low
temperatures,

4.2. Magnetically saturated sublattices

In that case where Eq. (4. 15) holds true for each a
separately, the constraints ug,=const throughout space,
and those represented by Egs. (4.16)—which exhibit a
relationship between the different arguments appearing
in y —must be taken into account in computing ¢ ac-
cording to Eq. (4.24). One method is to introduce
Lagrange multipliers P, and 2,,, o =A,B, K=1,2,3,
respectively for the constraints pg, = const and Eq
(4.16). That is, we may consider in lieu of zp the follow-
ing effective free energy density

we“ = J(EKL’ 777?{5 777%L; 9)
(4.37)
—Z) {pa (“7'7(7;%_ “?Sa) + paK”I%L;ﬁ%}'
[

However, instead of the last constraints involving /2, k,
noting that Eqs. (4.16) represent six scalar constraints
and that m¥; and J%.(a=A, B) have respectively eigh-
teen and twelve independent components, it is astute to
replace the dependence of ¥ upon m%; by that upon /%,

and to discard the Lagrange multipliers /,4. Thus,

lberl:a(EKL)?;?%v/n?{L;g)_E /ja(mﬁﬁ%- “‘?sa)' (4'38)
«

The computations are made much easier with this last
effective free energy. Indeed, noting that

2P ?
é‘y;% ZZ%XL,!:“(«M,P’ (4.39)
- — -1
3 3y ( G ) 3C yu
+E TR9 ) 4.40
B 0B \Te o3 ) B .40

of which the second transforms to

-~

3y Gl
3B, ‘h¥¥nr=5g XX 22  Heordumban, s

(4.41)
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on account of the intermediate results
-1

) o o -1 -1
ﬂi}ﬂ =mbymdy, cf"”’ ==2CyxCy1, (4.42)
oC, gy

which follow from Egs. (4.14) and (4. 7)— (4. 8), the

Eqs. (4.35), (4.36), (4.27), and (4.28) are transformed
to the following ones:
Bl ="ti5= 23 (p ™ Bay; I (ari)» (4.43)
o
a~
Et“:pﬁin.xth:Etm (4.44)
a
RLB(a)i a;ﬁ) 1,1(’ (445)
o7
RB(a)ijzzp'aWZﬁ—;“(a)i,ij,K~ (4. 46)

The following comments are in order concerning
these results. First, it can be remarked that the /,’s
do not contribute to the expression of Rt,-,-, as is shown
by the calculation; their contribution to **B,,, has been
discarded since they yield vanishing contributions in the
precession equations (2.4). Next, the derivatives 2/
IM%: do not contribute at all to the expression of Rt,-,-.
This, of course, does not mean that /%, cannot appear
in this expression since a function of /%, may be in a
factor of Egy in the free energy density, so that /%,
will, in general, appear in the expression of #{;;, thus
yielding an exchange-strictive effect. However, the im-
portant point here is that the exchange and superex-
change forces do nof participate in the skewsymmetric
part of Rt,-j, i.e., in the effective volume couple acting
upon the crystal lattice. Indeed, from the symmetric of
M%. in K and L we have, with the aid of Eq. (4.46),

7
RB artiiel H(am.k=zpm.% U eortiy kM (arit, 1 =0. (4.47)

Thus, as shown by Eq. (4.43) and on account of the sym-
metry of Ff;;, we have

Btein =29 P Biatil i (4.48)
o

Equation (4. 47) is none other than the constraint a
priori considered in Part I in order that the global law
(I. 3.49) for the magnetic sublattices be satisfied and for
the model of three interacting continua constructed in
the Appendix of Part I to be valid. Then Eq. (4.48) is
none other than the local balance law (I. A7) of moment
of momentum for the crystal lattice, which in fact
expresses the only divect interactions which occur be-
tween the crystal lattice and the magnetic sublattices.
However, as already indicated above, there may be
other couplings between the deformations of the crystal
lattice and the precession of the magnetic sublattices
via magnetostrictive, and exchange-strictive effects.
Such effects can be made clear by further specifying the
form of the free energy function ¥ or zﬁand the material
symmetry of the magnetically ordered deformable body.
This is examined in the next section.

The constitutive equations (4.43)— (4. 46) for thermo-
elastic antifervomagnetic insulators with saturated sub-
latlices, thus at temperatures much below the Néel’s
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temperature, are of course supplemented with Eq.
(4. 38) and the heat conduction law

qi:xi,M_éM(EKL’yn‘lx()/n%L, 9) 9,1{)’ (4-49)

which replaces Eq. (4.31) and satisfies conditions
analogous to Eqs. (4.32) and (4. 33).

5. APPROXIMATIONS
5.1. Expansion of the free energy

. The exact reduced functional form of the free energy
¥ or P can be found for special material symmetries
(e.g., full isotropy, hemitropy, orthotropy) with the
help of exact representation theorems (see Wang, '8 and
Spencer! %); however, most often, one is satisfied with a
reasonable expansion of the free energy in terms of its
arguments. We give such an expansion for the case of
thermoelastic solids with saturated magnetic sublattices.
In these conditions, if E%; is an initial strain field and
EAB is a perturbation such that
Epp=EYy+E,.5 EYp=30 4505645, 5.1)
we obtain

1 2 ~
oo =G(m¥,Mis, 8; E?(L) +G aglmf, Nis, 6; E?’(L)EAB

3 -~ o~
+Gapcp(m§ M3s, 6, Ex1)E4pE cp

(5.2)
+h.o.t. in IZ‘AB.
Assuming that
m¢=m¢’+m¥, mF=piwi*), (5.3)

Mgr= M3 +gs, 6=6"+B

where~9° is a uniform reference temperature field such
that (§/6% <1 and 6 < 8y, and that the tensorial coeffi-
cients of the expansion (5.2) are sufficiently differen-~
tiable in their arguments, we get

=y = Mof - 200 9 + 0y [NKLEKL+E (NKW??(JFM%W%L)]E

(a8) ~ 8

+27 pox*Img + %QE X@meme +py 2 X8 mgng
3 a o#8

+27 [

a#f

po 2 AL+ 2 LKPQWIK/MPQ B Mo

+ Py (LKLEKL + ZLKLMNEKLEMN) + 2 eXTEIMEE Ly
~ ~ b jnd ~ o~ B
+ 27 po VSN E k1Mo + 20 po YIS E i’y
o a#B

(5.4)

+ 20 P VN E s mE 400,
[+ 4

where the different coefficients introduced (ng, v, Ngr,

%, etc) have obvious definitions as derivatives of
different orders of the G’s taken at the zero value of the
arguments, and satisfy trivial symmetry conditions that
we do not reproduce here. According to the accepted
terminology, the different tensorial coefficients, which
still depend on the initial state (here assumed nonnatu-
ral) represent the following effects: Ng.: thermoelastici-
ty; N%: pyromagnetism; Mg;: pyro-exchange effect;

xﬁ("f and x¥%¥: magnetocrystalline effects and exchange
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effects not due to the disuniformities in the magnetiza-
tion fields; A{%’: exchange forces; Ly;: initial siress;
L yrun: elasticity; e3%): piezomagnetism; yi&)y: ex-
change- strictive effects; y{1%y and y{1%y: magneto-
striction. The terms mcludmg xQ®, £, and [i88)
are introduced for the sake of generality, but can be
shown, in certain conditions specified below, to be zero
if the corresponding terms are to be invariant under the

operation of time-reversal f.

Now consider the case where the expansion (5. 4) is
made about a natural undeformed state that is free of
stress and is not magnetized, Then,

711?’0:0, /}1?‘9:0, E%L:O, LKL:() (5.5)

Let us further assume that M%; =0. Remarking that the
remaining tensorial coefficients of the expansion (5. 4)
now have components which depend only on 6° (and possi-
bly on some other parameter of the material such as the
matter density), the coefficients ¥, /%, and /&5
must be zero in virtue of the time-reversal invariance,
Let us finally assume that the material is cenfro-sym-
metric, so that the remaining third-order tensorial co-
efficients must be zero, for there do not exist repre-
sentations of such tensors for centrosymmetry. If all
these conditions are fulfilled, the expression (5.4) re-
duces fo the following one:

Y= le, e1 lpma ex T zj"m.s'. + d’ex,st + d)exv

where (the tilde is no longer necessary, except for the
temperature)

(5.8)

Pin,e1 = Yo~ 7705 - 2_’;/052 - 0615 NKL(GO)EKL
1 (5.7)
+2p Liruw(8VEx By,
V. ex = %Z‘/ ) (8%)ymEme + p, Z; X (8%)ymgms, (5.8)
3
Pin,st = 20 o YN (6 VE g pmipmy + 2 Py VN (B0 E g mm®,
o [%3:3
(5.9)
Yexast = 27 Po YEEIN OV Exr Mipw, (5.10)
¢ 4
x= £ Z;AKL(Q Wk (5.11)

The expressions (5. 7)~(5.11) represent, respectively:
(i) the thermoelastic energy; (ii) the magnetocrystalline
energy and the exchange energy not due to the disuni-
formities in the magnetization fields (superexchange
forces); (iii) the magnetostrictive energy; (iv) the ex-
change-strictive energy; (v) the exchange energy which
represents the interaction energy between spins of the
same magnetic sublattice. Concerning the latter, the
following important remark must be made. Clearly, by
performing the expansion procedure and the approxima-
tions represented by Eqs. (5.2)—(5.6), we have partly
disconnected the different interactions, in terms of the
initial independent variables present in Eq, (4.22), the
expansion (5.6) can be written formally as

b=y (g, 15 0) (%5, e, 1 (03438%)

+ 3%,k Bcarin k5 0 %) + B (ori, 55 60, (5.12)
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where there is no one-to-one correspondence with the
energies defined by Egs. (5. T)—(5.11). Applying the ob-
jectivity requirement to each ¥;, i=1,2,3,4 of Eq.
(5.12), we find

b= (Egr;0) + dy(Exp, m$;6°)
+ Dg(Egr, M1 00 + 0y(M %z, Migs; 6°).

Here, the representation of y, that contains the variable
defined by Eq. (4.6) follows from the usual Cauchy’s
theorem. * Taking the expansion of the different contri-
butions in Eq. (5.13) and regrouping alike terms, we
obtain an expression of the same form as Eg. (5.6),

but with an extra term which has been overlooked in the
afore-used procedure:

Z1‘[)s.ex pOEA(aB) KLa

(5.13)

(5.14)

that represents the superexchange energy resulting
from the disuniformities in the magnetization fields of
diffevent magnetic sublattices. Thus, in fact, the con-
tribution (5.14) must be added to Eq. (5.6), which now
reads

Y= Zl)th.el'*‘QDm.ex'*'Zabm.st_f'ibex.st"*'Zpex"_zibs.ex' (5‘ 15)

It can also be remarked that Eqs. (5.11) and (5.14) are
limited to the first order in /%, and /%2 ; the reason is
that the latter variables are already of second order in
the magnetization gradients. Finally, it is not surpris-
ing that both expressions (5.10) and (5.11) appear sim-
ultaneously, for it can be shown, when only one mag-
netic sublattice is involved (i. e., in ferromagnetism),
that the whole expression

%po(‘qKLMKL + zy;{"i)MNEKL/nMNr (5.16)

results as a whole from a semimicroscopic model based
on Heisenberg’s expression for the spin—spin interac-
tion potential applied to an elastic body subjected to
large deformations. 2* However, it must also be empha-
sized that the last contribution in Eq. (5.16) is of the
order of (strain) x |V |%, so that the contribution (5.10)
will in general be discarded in simplified theories.

Since the antiferromagnetic bodies we are interested
in are seldom subjected fo large deformations, it is of
importance to examine the case of small deformations.
This will offer the opportunity to specify, for a chosen
material symmetry, the explicit form of the material
tensors, and to compare the resulting form of the in-
ternal energy with those postulated in other works.

5.2. Infinitesimal deformations
A. General case

In the case of infinitesimal deformations about a
natural undeformed configuration K, it is assumed that
the displacement u (components «;) is such that |vuf
<98, where 6 is infinitesimally small of the first order.
Then, as & goes to zero, we have

%y, 5% (g5 +otg, )0k 5.17)

_1
Egr=e;;8;k0;z, €352, ;+u;,,),

since products of Vu are O(5%). e;; 1s the usual linear-
ized Eulerian strain tensor. Consequently, we have
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ME U (01 Oix5
o . po o« =
ML= MepOrkOzs Mep= Lhcari, kb cari,ps

5.18
M3 = M8k Bs 1, Mep = W (arinabh (oriy o ( )

p=py(l—ep),

where we have neglected product terms of the types

L ® Vu and Vu® V. Of course, it is no longer dis-
tinguished between small and capital Latin indices. The
general constitutive equations (4.43)—(4.46), and (4.29),
(4.31), and (4. 34) take the approximate forms

Rtu=00(aie% +§ %p’(a)i); (5.19)
FEB gy =~ 3 “a(zi” , (5.20)
RB(«)U:PO%, (. 21)
n:—z—g, (5.22)
4y =0,(ent tiari» M5, MEE,0,6) (5.23)
b= Plens, tcaris M MEF, 0. (5.24)

On account of Eqs. (5.17) and (5.18) the expressions
(5.7)—(5.11) and (5. 14) take the following form:

~ oy L~ 1
Pin,er = Yo = M0 = 570 6%~ p5'0v;;(6%e;; + 30, X ses(60%)e; 01,
(5.25)

D, ex I%Q 27 X' BN cari b cars + Po ?ﬂx(ﬁﬂ)(go)u(anﬂ(sm
o o

(5.26)
D, st = 2 Po Y§}'5¢°§’(9°)eu#(a>ku<au
« (5.27)
+Z:; o ViTsP (6%) e; itk carabh aris
o
Y= alP (015, (5.28)
o
Zpse ex ZpOE ai(gB) (90)/}1?}3- (5. 29)
a8

We have discarded the exchange-strictive effect for an
above-given reason. The remaining material tensor
coefficients satisfy the following tensor symmetries:

Vii=Viiy Aijrt =X = Maig

Xi(?):thg)r nga):X(JPEB):Xﬁga)y (5. 30)
'Y:STkof) = Yg';":;) = ')’ﬁ?ﬁe), 7’2?‘58) = Vﬁ?"k"iﬂ’ = %g;n’ga),

a({o;)_:a(joi(), a(‘ojﬂ):agga)_

As regards the heat flux, it is of course assumed that
IV8| <3, where §, is infinitesimally small. On account
of the continuity condition (4. 32) a Taylor series expan-
sion about V8 =0 yields the classical Fourier law

q,-:—K,-j(OO)G”. +0(5y) (5.31)

as 0, goes to zero. The tensor K;;, which is referred
to as the conductivity tensor, is symmetric after the
Onsager—Casimir relations, and is semi-positive defi-
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nite according to the remaining thermal inequality
(4.33). In writing the functional dependence of K;;, we
have discarded the coupling of heat conduction with the
thermodynamically recoverable phenomena. It remains
to specify the material symmetry.

B. Elastically isotropic antiferromagnets with a
magnetic easy axis

As far as the elastic properties are concerned, the
antiferromagnetic solids fall in different crystallo-
graphic classes. In this respect many of them are either
simply polycrystals, so that they can be considered as
elastically isotvopic, or are of cubic structure, Even
if the latter structure is considered, it must be re-
marked that the typical nondimensional parameter (c44,
¢y1, and ¢y, are usual adiabatic elastic constants for a
cubic erystal)??

E=1=2cy/(ci— c1p),

usually used to measure the departure of cubic sym-
metric from isotropy is quite small in typical antiferro-
magnets, of the order of 0.06. It follows that we shall
content ourselves with giving the explicit expressions of
the material tensors describing elastic effects only for
isotropy, the expressions obtained being considered for
illustrative purpose. Then the tensor coefficients v,
Xijurs Vi), and y{igP take on their isotropic form,
which follows from a classical representation theorem
due to Racah®%:

(5.32)

Vij=v0;,
Aijre=A10130m + Xo(8;10;; + 05105, (5.33)
v =038, + b5(8;,0;, + 8;15;0),

( (B
VIR =d{*® 8,6, + A5 (6,,0,, + 0,,0,,),

on account of the symmetries (5.30). v is the stress-
temperature coefficient, X, and A, are the adiabatic
Lamé constants, and b and b¢ (@ =A, B), and d{*® and
d{*® (a# B) are the magnetostrictive constants, all in
fact dependent on 8° <« 8. Substituting from Egs. (5.33)
in Egs. (5.25) and (5.27) and noting

M{=pottcarir MP=pothnyi, (5.34)

the sublattice magnetizations per unit volume for the
two sublattices o =A, B, the resulting expressions of
the different energies are positive definite if and only
if the following restrictions areimposed on the various
constants:

y>0, 3, +22,>0,
b =g =d*® =0,

v>0, A, >0,

(5.35)

The algebra leading to these results is similar to that
given in other works.?® There is no magnetostrictive
effect except through the constant d{*®,

As far as heat conduction and the magnetization dis-
uniformities are concerned, the material tensors con-
sidered are of second order, so that it need not be dis-
tinguished between isotropy and cubic symmetry, for the
representations are of the same type in both cases.

That is, with ¢ =A, B,

Gérard A. Maugin 1746



K;;=K(6°)5;;, (5.36)

aif? =ai7" = (66,

The same constant o is used for representing both
al#4 and (PP, for the latter represent similar inter-
actions within each magnetic sublattice. The semi-
positive definiteness condition (4. 33), and the positive
definiteness of the interaction energy i, + s, ox require
that these new coefficients satisfy the following
restrictions:

(5.37)

K=0,
a >0,

(5.38)

(@+aMa-a')>0 (5.39)

Finally, as far as the magnetocrystalline effects and
the exchange phenomena not due to the magnetization
disuniformities are concerned, a realistic exemplary
symmetry is that which corresponds to a uniaxial anti-
ferromagnet, the ground state of which in the absence
of an external magnetic field is determined by two com-
pensated magnetic sublattices. Let n; be the unit vector
field pointing in the preferred direction thus distin-
guished for the magnetic anisotropy properties. The
symmetry group under which the material tensors x“’”
and x‘%® must be invariant then is that of rotations R/
by an angle ¢, 0 < ¢ <2w, about the unit direction ny.
According to a theorem due to Smith and Rivlin, 26 y{%’
is necessarily of the form

x$9) = Bg6;; - B¥nymy;, a@=A,B. (5. 40)

As to x$¢®, if the rotations about the direction n, do
transform one of the sublattice into the other, then it

has a representation analogous to that of x“’. 2 That is,

3% =30y, (5.41)

Xij

If, however, such rotations do not transform one sub-
lattice into the other, then a supplementary joint in-
variant of M# and M? must be considered. Equation
(5.41) yielded the quadratic invariants M4« M? and
(M*+ng)(M® - n;). Now we have in supplement the quad-
ratic invariant M*5(n,)= (M4 XM?) - n,, ¥ which changes
sign under interchange of A and B, so that the repre-
sentation (5.41) must be replaced by the more general
one:

- B'ngimg;e

X3P = B38: 5= Bngimg; +de; gy (5.42)

On account of Eqs. (5.41) and (5.42), the energy (5. 26)

can be written as

\I’m.ex:p()wm.ex:_ %B[(MA . no)z
- B'(M* -+ n)(M? .« n;) +d(MAXM?) - n,,

+(M®+ ng)?] + 5(M* - MP)
(5.43)

where we have set =p£ =82, 5=8;, and have discarded
the terms proportional to (M%)? and (M?)? since they
yield pure constants in the case of saturated magnetic
sublattices. It remains four material constants: 8 and
B’ are the magnetic anisotropy constants. The anti-
ferromagnet is said to be of the “easy axis” type if B

- B8'>0.? The constant 5 accounts for the interaction
between magnetic sublattices that do not arise from
disuniformities in these lattices. The constant d, which
is of the same order as the anisotropy constants, is the
constant of weak ferromagnelism. Indeed, if d differs
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from zero, then, as has been shown in the original
microscopic models of Dzyaloshinskii®® and Moriya, 3!
the presence of the last contribution in Eq. (5.43) may
in fact lead to the phenomenon of weak ferromagnetism
exhibited, for instance, by CrF;.°!

Collecting the expressions (5. 25)— (5. 29) on account
of the representations (5. 33), (5.37), and (5.42), and of
the notation (5. 34), where p; is assumed to be uniform
throughout the body in its initial configuration, we ob-
tain the expression of the free energy for an elastically
isotropic antifervomagnet with weak fervomagnetism
and a magnetic easy axis ng:

T=pyh =T — pyTlol — %%%52 + (3N em— VO + 5Y°MA s MB)e,,

+ gy 0,5~ 2BL(MA ¢ ng)? + (MP » ny)?]
- B'(MA s 1) (M5 . ng)
+8M# « MP +d(MAXM?) s n

3 [foMA\2  (aMP\? , M4 aM3
+2°‘[<a—x;> * ( axiﬂ BT P
where we have set y*=d{#?/5, the remaining magneto-
striction constant. Except for the thermal, thermo-
elastic, and “weak ferromagnetism” terms, this expres-
sion coincides with that postulated by Bar’yakhtar

et al.? On account of Eqs. (5.44) and (5. 36), the con-
stitutive equations (5.19)—(5.23) and (5. 31) read, for
d=0 (i.e., in absence of weak ferromagnetism):

(5.44)

Bt = (\ewm— VO + 8y SMA e MP)5,, + 20pey,
+ MA(L +y e )MP — [ BMA eng) + 87 (M2 o ng) Iy}
+MPO(1+7° e, )M} = [B(MPeny) + 8/ (M4 ¢ ng) by
(5. 45)

BLB mi =1 BM* o ny) + B2 (MP o n)Ing; ~ 6(1 +v°ep) MF,

(5. 46a)

RIB gy =[BMB o ng) +8(M* e ng)lg; = 6(1 +1°e,)ME,

(5. 46b)
BB aris=polaMi ;+ a'ME }), (5.47a)
B yis=polaMP s+ a’ME ), (5.47b)
U=Uo+%‘?+051"ekk, (5.48)
q;=-K8, ;. (5. 49)

Let Mg=IM#|~ IM?]| be a typical magnitude of a sub-
lattice magnetic moment per unit volume and ¢z a
typical elastic wave velocity. Then a typical nondimen-
sional parameter useful in studying coupled (via mag-
netostrictive and ponderomotive effects) magnetoelastic
waves will be £=95(M%8/p,cd)!/?,

In conclusion of this point it must be noticed that, for
the sake of example, we have considered a different ma-
terial symmetry for each class of effects in order to
write the energy (5.44). A more coherent scheme con-
sidering only one symmetry (such as cubic symmetry
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or transverse isotropy) can be formulated without diffi-
culty. *® As to the fields ¢;;, *B,, “Bg, B4 and Bz,
only the thermodynamical recoverable parts (indiced R)
are given by Eqs. (5.45)—(5.47). The next section is
devoted to constructing the dissipative parts, which
yield viscosity and spin-relaxation phenomena, the
latter playing an important role in the damping of
coupled magnetoelastic waves, especially in the cross-
over regions of the dispersion diagram.

6. DISSIPATIVE PROCESSES
6.1. General dissipative processes

Consider the case of an antiferromagnetic deformable
heat and electricity conductor whose magnetic structure
is made of two magnetic sublattices @« =A, B. Then the
fundamental principle that governs the general thermo-
dynamical processes is Eq. (3.12) in which is added the
Joule contribution. That is,

-p@ +n60)+0,;D;;— p(“Bay* Mgy + By, * Mp))
+(Baris Mwris +Bimris Sﬁl(sm)+ﬂ «£-6"1qeVg=0.
(6.1)

Instead of dealing with this general inequality and con-
sidering a nonlinear theory of irreversible processes,
we make the following simplifying assumptions: (i) the
fields 0;;, “By,, and A ,,;; Present additive thermody-
namically reversible and irreversible contributions (the
latters indiced D on the left), such that (¢ =A, B)

R D L RL DL
035="0;3+ 7035, “Bay=""Ba)+ " Bay
R D,
Biay="B )+ By

where the recoverable contributions and 7 are derivable
from the potential ¥, and have expressions of the type

of those derived in previous sections; (ii) the physical
significance of each dissipative force is directly related
to the interpretation of the interactions represented in a
phenomenological manner by the different internal forces
(see PartI). Thus, “o;; gives rise to viscosity, *XB,,,
and ?“B;, represent the transport phenomena asso-
ciated with, firstly, the interactions between the two
magnetic sublattices and the crystal lattice and, second-
ly, the intermagnetic sublattice interactions that do not
result from disuniformities in the magnetic sublattices.
Although they theoretically represent the transport
phenomena associated with the spin— spin interactions
arising from the disuniformities, no microscopic basis
can be found, for the time being, for the effects repre-
sented by 84, and B (5,, so that we shall set these last
two fields equal to zero; (iii) We consider a partial un-
coupling of the different transport phenomena and use the
Onsager—Casimir linear theory of irreversible process-
es. Then, on account of the fact that,

(6.2)

ph==pnb +%0;;D;; =23 (p" Biq) * M(a) = *Baris Mearis),
[+1

(6.3)

and of Eq. (6.1), the remaining dissipative contributions
must satisfy the dissipation inequality:

b= [Doij(eokal)Dij] = po[ P¥B )y (8, rh(a) Yo My,
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+PIB5),(6°, m(y,)) 0 ﬁi(m]*’[ﬂ(eo, E, Ve & (6.4)
-67q(6°, £,V6) - vo]=0.

In the linear theory of irreversible processes for an
isotropic medium, we thus have®

Doy 5 =11(6°)D b5+ 2n,(8°)D 5, (6.5)
PIB 4y == pol T (6 mqay + T12(6°) M) ), (6. 6a)
DLB gy == p[T2(69) M5, + 71, (6% 4, ], (6.6b)
J=0(6")€ + K,(6°)(6")71v8, (6.7)
g=-K(69)Vo- K, (6% ¢, (6.8)

where 7, and 7, are viscosities, 7y, Ty, and 7y are re-
laxation times, ¢ is the electrical conductivity, K is
the heat conductivity, and K, is the material constant
allowing the representation of the Thomson and Peltier
effects. The semi-positive definite character of ® re-
quires that these material constants satisfy the follow-
ing inequalities:

3y +2m,20, Mm,=0, 7,20, TT,-T14H>0,
6.9
6= 0, oK6"-Ki=0. (6.9)
In agreement with the infinitesimal strain theory
sketched out in the foregoing section it must be noticed
that

. 1.

p=py, Dyi=ug, ), £=E+quB. (6.10)
We shall focus our attention on the dissipative pheno-
mena represented by Eqs. (6.6).

6.2. Spin-lattice relaxation

A. Strong damping

On account of the additive character of the decompo-
sitions (2. 10), (2.11), and (6. 2) with respect to the in-
ternal forces, we can write

tiy="ty;+ Pty (6.11)
BeiS =FB{L) + PBgL, (6.12)
where
=20+ 22 (pPEBiarribicarn)s (6.13)
a=A, B
BB =B, + % Boyi + 07 *Baris s (6.14)
DBfg)EDLB(a)- (6.15)

Equation (6.13) shows that the dissipative fields ?*By,,
contribute to the dissipative stresses. As a result of the
decomposition (6.12) the spin precession equations (2. 4)
can be rewritten in the following form (o =A4, B):

o)== Yo BEaS X ba) + Reays (6.16)

whereas the Cauchy equation (2.2) can be written as
M= M4+ MB)

pU =divRt+%- 2

a=A, B

(pr—zR-iﬂ>+f+ (VB)« M, (6.17)

[+
where the relaxation terms R(,, are defined by
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R(t!):'ya“'(a)xDLB(a)’ ((I:A,B), (618)
and the viscous force *f by
“t =div %o, (6.19)

The transformation (6.17) of the Cauchy equation is ob~
tained by noting that, after Eq. (6.18),

(VXPR(a))iZ—27a(PDLB(amH(a)i]).i~ (6.20)

In the above-stated equations the constitutive equations
of the fields %¢;;, F'B,, and 8 ,, are those obtained in
Sec. 4 or 5. Note that no hypothesis has been made con-
cerning the magnitude of the constants 7, 7,, and 7y,
so that the terms R(,, correspond to spin relaxation with
a possibly strong damping. The expressions (6.18) can
be made more specific by assuming, first, that r,=1,
=171, since the spin—crystal lattice interactions are of
the same type for both sublattices. Then, with 7 and 7,
positive, the fourth of Eqgs. (6.9) requires that 7,, < 7.
Next, in the infinitesimal strain theory, we can define

the vorticity vector by
ﬁi:_%eijkﬂjk:%(vxﬁ)iy (6.21)

where, from hereon, the superimposed dot indicates
the partial time derivative. Then, on account of Eqs.
(5.34) and (6.6), Egs. (6.18) take the forms:

Rar=poReay =— y MAX[7(MA + MAXQ)

. ~ (6.22a)
+7,5MZ+MZXQ)],

R e = PoRea) UZ‘ vsM® XN[T(MB +M?xQ) (6. 22b)
+T,5(MA+MAXQ)],

where T,5=T7;,. By the same token the Cauchy equation
(6.17) takes the form
poi=divFt+°f- 2 <V><%ﬁ2>+f+(VB)eM, (6.23)

a=A, B

whereas Eqs. (6.16) read (a« =A, B)

M® =y, M*XZ®BSIL 4 R, (6.24)
The relaxation terms defined by Eqgs. (6.22) general-
ize to the case of deformable antiferromagnets the spin—
lattice relaxation term that we have proposed earlier?
in deformable ferromagnets to account for a possible
strong damping of this spin relaxation. They are of the
type of the relaxation term proposed by Gilbert® in rigid
ferromagnets, but with the supplementary effects due to
deformations. Whereas the rate of strain partipates in
the classical viscosity processes—cf. Eq. (6.5)—the
rate of rotation (vorticity) participates in the relaxation
of the magnetic sublattices. This shows the interest
of using the Jaumann derivative to define an objective
time rate of the magnetic sublattices in deformable
media. The presence of these relaxation terms in the
Cauchy equation (6. 23) shows that, especially in the
crossover regions of the dispersion diagram of coupled
magnetoelastic waves, the damping of elastic waves
may partially be caused by the spin—lattice relaxation.
On account of the constitutive equations (5. 45)— (5. 47),
and (6.5), the Eqs. (6.23) and (6.24), along with the
expressions (6.22), allow a complete study of damped
magnetoelastic waves in an infinite linear elastic anti-
ferromagnet in the presence of dissipative phenomena
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resulting from viscosity and spin relaxation (the latter
with strong damping).

B. Weak damping

Let us assume that the constants 7 and 7,5 are in-
finitesimally small of the first order: O(1) =0(T,5) =¢.
Then the contribution &, in the right-hand side of Egs.
(6.24) may be considered as a perturbation. The fields
M4 and M2 that it contains can be evaluated from the
spin precession equations (6.24) in absence of relaxation.
That is, up to terms of the order of €2, we can write

Ry = (TAME)TMAX[MAX (FBSY, +7; 100)]

— (T4 ME) MAX[MEX (RBEY, +759)],
Repy = - (T5M%) TMPX[MP X (*BEL +v;10)]

= (r4aM3)MPX([MAX (*BES, +vih,Q)),

(6.25)

where we have introduced the new relaxation times
Th= (AMED)™, 1h= (VAMAT), Tip= (vavsMETap)™,
(6.26)

and a typical value Mg of the magnetization per unit
volume. Equations (6.25) generalize to the case of de-
formable antiferromagnets, the relaxation term con-
sidered by Akhiezer et al.® in elastic ferromagnets,
which term itself generalized the pioneering proposal
of Landau and Lifshitz™37 for rigid ferromagnets. How-
ever, the relaxation terms (6.25) are here obtained at
the approximation of weak damping of the magnetic sub-
lattice oscillations. Thus, in a certain sense, Egs.

(6. 22) provide relaxation terms valid in a wider range
of damping, as is corroborated in rigid ferromagnets
by studies based on statistical mechanics® and by ex-
periments. *° In applying the Eqs. (6.25), it may be as-
sumed without too much loss that y, =¥z, so that 7}
=Th.

To conclude this section on dissipative processes we
note that, by using Eq. (3.11) and the results of Secs.
5 and 6, there is no difficulty in establishing the heat
conduction equation which follows from Eq. (3.10) for
linear elastic antiferromagnetic heat and electricity
conductors in the presence of viscosity and spin relaxa-
tion (for both strong and weak dampings).

7. RIGID STATIONARY FERRIMAGNETS

The results of Secs. 5 and 6 are readily specialized
to the case of rigid stationary ferrimagnets, for which
we need consider only Maxwell’s equations and the spin
precession equations with « =1,2,...,n. Then, assum-
ing an isotropic spin—Ilattice relaxation and defining ¥
=po¢ and the total energy

W:‘I/(M(a), VM(OL),Q)-M'(B—N‘M), (7.1)

where / is the demagnetization tensor whose explicit
form depends on the shape of the finite specimen and
M=},M,, Egs. (6.16) take the following form for
strong damping:

oW

Mgy =~ YoMy X <— +27 TaBMl; )

7.2)
M) 8 (

where 5/6M(a) indicates the Euler—Lagrange functional
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derivative, and T,, are the n(z +1)/2 independent relaxa-
tion times which obey the dissipation inequality

EB TasMia) M, > 0. (7.3)
1)

For weak damping, applying the same perturbation pro-
cedure as in Sec. 6.2, Eq. (7.2) is replaced by

M(a):—yaB?;t)xM(a)’ (7-4)
where
n
jod SW
B == 20 (53805 + TanVats iMaye) M {71.5)
8- (8

Equation (7. 2) generalizes to ferrimagnets the equation
proposed by Gilbert!? in ferromagnets, whereas Eq.
(7. 4) generalizes the Landau—Lishitz equations. It must
be noted at this point that in most treatments essentially
ferrimagnetic multi-sublattice effects concerning re-
laxation have so far been ignored.!! For small damping,
it may further be assumed that the combined effect of
the various sublattices can be expressed in terms of a
suitable averaged damping term acting on the resultant
magnetization M. This is what happens here if one sets
Tes=T> 0 for any o and B. Then Eq. (7.2) yields

M(a):—yaM(a)x(_OW_-FTM). (7.6)

5]'\/I(nz)
It is expected that for large damping the description
provided by Eq. (7.2) or (7.6) will be more adapted to
the physical reality than Eq. (7.4).

8. CONCLUSION

By way of conclusion we specify the range of appli-
cability of the various equations obtained in this work.
As already pointed out the equations obtained in Sec. 5
can be applied to the study of coupled magnetoelastic
waves in elastic antiferromagnets, possibly endowed
with the property of weak ferromagnetism. This study
is particularly important in the frequency range where
the Magnon—phonon interactions may occur because of
the potential use of the conversion of energy thus al-
lowed. In this case the quasimagnetostatic fields can be
used without too much loss. In particular, the dissipa-
tive phenomena of interest then are only viscosity and
spin relaxation with strong or weak damping, which
supports the interest for the development of Sec, 6.
The electric field then is ignored. The situation is quite
different in the frequency range of optical phenomena or
if one is interested in the coupling between spin waves
and electromagnetic waves. Then the following altera-
tions must be made, The fully dynamical Maxwell’s
equations must be considered in lieu of Egs. (2.6)~—
(2.7), and in the case of an electrical conductor (e. g.,
in rare earth metals and alloys) one must consider the
conduction law (6. 7), taking account of the Thomson
and Peltier effects if such coupling effects are exhibited
by the antiferromagnetic medium. Finally, the elec-
tromagnetic momentum must be accounted for in
Cauchy’s equations of motion in computing the ponder-
motive force, so that a Lorentz term (l/c)ﬂ xB will
appear in these equations.*? The discussion above per-
tains to the case of a material which is free of stress
and magnetization in its initial state. A more involved
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problem consists in considering perturbations on an
initial state defined by an inijtial stress field and a finite
static state of magnetization. In the latter case, the
equations governing the perturbing fields superimposed
on the bias fields can be deduced from the exact non-
linear equations given in Sec. 2.1 and Sec. 4, according
to a scheme similar to that used by other authors?® in
different circumstances. This will be the concern of
further works,
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A solution is given for the problem of inverse propagation of a scalar wave in inhomogeneous rectangular
two-dimensional waveguide. The sound speed is assumed to vary in depth and inverse propagation means
the calculation of the field at range x; in terms of the field at range x, where x,> x,. The method is
analogous to that used by Wolf, Shewell, and Lalor for the inverse diffraction problem in a homogeneous
half-space. It is found that the field at x, can be expressed in terms of two integrals over the field at x,.
The kernel of the first integral is bounded and expresses physically the result at x, of the waves at x,

reversing their direction of propagation and decay, i.e., they now propagate and decay in the direction of
x,. A reciprocity relation for this term is possible. The kernel of the second integral is singular and
expresses the mathematical fact of the residual effect of the evanescent waves at x, as they reverse their
direction at x, and now grow exponentially. Consequences of the neglect of this singular term are

discussed.

INTRODUCTION

Sometime ago, Wolf and Shewell' and Lalor? dis-
cussed the solution of the inverse diffraction problem in
a homogeneous half-space. Simply, one has a field
propagating into a half-space z >0, and assumes the
field is known on some plane 2= z,. The problem is
then to find the field on the plane z=z,, where 2z, <z,.
For example, one might wish to calculate the ‘“near”
field from the “far” field. The result is expressed as
the inverse of one of the Rayleigh diffraction formulas.
The kernel of the inversion contains two terms, one of
which is singular. Methods for handling the singular
term are discussed,

In this paper we briefly present a similar analysis
with the problem being the calculation of the inverse
field in a two-dimensional rectangular waveguide. Here,
in addition, the waveguide is assumed to be inhomo-
geneous in the sense that the sound speed is a function
of depth.

In Sec. 1 we present the basic analysis and express
the field at x, <x, as a sum of two terms, each of which
is an integral over the field at x,. The kernel of the first
integral is bounded and the term describes that part of
the field at x, due to waves at x, reversing their direc~
tion of propagation and decay. The kernel of the second
integral is singular and the term describes exponential -
ly growing waves at x, due to evanescent waves at x,
which grow towards x,. In Sec. 2 the reciprocity rela~
tion of the first term is derived, and in Sec. 3 a brief
discussion is given of the consequences of neglect of the
singular term.

1. GENERAL FORMALISM

In two dimensions the propagation of sound is
governed by the Helmholtz equation

Oy T b, HRM(2)(x, 2) =0 (1)

for the velocity potential field ¢.° Here, n(z), the index
of refraction, is proportional to the inverse of c(z), the
sound speed, and k=27/x is the wavenumber with A the
wavelength. Since ¢ is a function of depth the equation
is said to be inhomogeneous. The general problem of
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sound propagation involves the solution of (1) assuming
that ¢ satisfies appropriate boundary conditions. Here
we first wish to solve (1) in the region 0 < z <D and

0< x <= (see Fig. 1), where ¢ satisfies boundary con-
ditions at z=0, D, and x =0, and an outgoing radiation
condition as x— =, Then we will assume that the field

is known on a (far) plane x =x, and express the field on
a (near) plane x=x, <x, in terms of the field on x,.

The solution of (1) is separable and can be written in
terms of an infinite discrete spectral representation

o(x, 2):]_20 A (2) explikm;x), (2)

where the eigenfunctions i, satisfy the ordinary differ-
ential equation

v; +Ru, ~q(2)] ;=0 (3)
with
q(z2)=1 -n*z2) (4)
and
{(1—u,-)1/2, 0<p,<1,
m; = +i(“j _1)1/2’ iy >1' (5)
Xy X2
[o] X
[ [
| |
‘ |
I c(2) |
]
| |
o 1 1
|
z

TIG. 1. Inverse propagation in a rectangular two-dimensional
waveguide. The sound speed c¢ is a function of depth z. The
field is assumed known on the plane x = x, and the problem is
to calculate it on the plane x=xy. Direct propagation proceeds
from xy to x,.
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The boundary conditions at z=0 and D (which we do not
specify) yield specific forms for the 3, and the discrete
eigenvalues u;, which we assume, for simplicity, are
confined to the positive real axis in the j plane. The
choice of branch in (5) is to ensure outgoing or decay-
ing waves as x— «. In addition we assume the ¢, are
orthonormal,

13 j=m,
fOD ZP,-(Z)J),,.(Z)dz = éjm = (6)
0, j#m.

Multiplying (2) by ,(z), integrating over z from O to D
and using (6) yields
A;=exp(—ikm x) fOD o(x, 2)p(2)dz. (7)
Now let x=x, and z=2z, in (2), x=x, and z =z, in (7),
and substitute the resulting (7) into (2) to get
dlx,, 2) = ,Zg ¥z, explikm ;(x, — x,)] fob P 2)0(x,, 2,) d2,.
(8)

Next assume x, <x, and split the sum in (8) into two
parts defined by

=

Z~:§, Z’:Z 3 (9)

J=J+1

where ;<1 and u,,, >1. To the result, add and sub-
tract the term

Z *d)j(zl) exp[— k(“’j —-1)/2 (%2 — xl)] fOD d’j(zz)(l) (x5, Zz)dzz;

(10)
and rewrite the result as the sum of two terms
d(xy, 21) = 1 (%1, 2.) + ¢y, 2), (11)
where we define (m =1,2)
bl z,)= me(qux;xz» 25)9 (%5, zz)dzz (12)
with
K \(x,, 215 %5y 25)
=2 b(2,)9,(2,) explikm (x, - x,)]
+ 2" ,(2,)0,(2,) exp[— k(u, = 1)/ 2 (x, — x,)]
:got d)j(zl)d)j(zz)exp[_ ikm}*(xz"xx)], (13)
where the x is complex conjugation, and
K%y, 2,5 %, 25)
=202 )9,(2,) explikm (x, = x,)]
—Z‘ %(21)%(22) exP[' k(IJ-j - 1)1/2 (%, - xl)]
- ;(20)9,(z,) sinh([k(p; - 1)/2(x, = x,)]. (14)

Thus it is possible to write ¢ at (x,, z,) in terms of two
integrals over ¢ at (x,, z,). The kernel of the first
integral, K,, is bounded and expresses physically the
result at x, of the waves at x, reversing their direction
of propagation and decay, i.e., they now propagate and
decay in the direction of x,. The kernel of the second
integral, K,, is singular since the summation in (14)
goes to infinity, and the problem becomes ill-posed
since a small change in the “initial” condition ¢(x,, z,)

1753 J. Math. Phys., Vol. 17, No. 9, September 1976

could produce a large change in &(x,, z,). This is the
mathematical expression of the residual effect of the
evanescent waves at x, as they reverse their direction
and grow exponentially in the direction of x,. The ne-
glect of this latter term means neglect of large wave-
numbers, short wavelength terms, and hence an inabili-
ty to gather information on an obstacle or process with
a characteristic length smaller than a certain amount.
There is thus a lower bound on the size of obstacles
which can be seen.

2. RECIPROCITY

It is possible to express the ¢, term as the inverse of
a diffraction formula analogous to one of the free-space
Rayleigh diffraction formulas presented in the refer-
ences. This is done as follows. The incoming wave
Green’s function G<(x,2; x’, z’) satisfies an equation
similar to (1) with a delta function source term

G., +G;, +E* 1 (2)G = = 8(x = x")8(z — 2") (15)

as well as the boundary conditions at 2=0 and D which
are satisfied by the eigenfunctions, and the asymptotic
condition of an incoming wave. It can be written as

Glx,z; x',2)= .Z({ (2,296 (x, x7), (16)
b=
where G; satisfies the differential equation
dz
(W +23(1 —u))G;(x,x’): - 6(x —x’) amn

and can be written as
Gi{x,x")=Qikm}¥) " exp(~ ikm¥ |x=x']), (18)

where the complex conjugate of m; is used in the ex-
ponential to ensure that for j >J the function is decaying
towards x,. From (13) it can be easily seen that

a -
K (x1, 255 %y, Zz):_zax Gxy, 2,5 X, 2,) (19)
2

so that ¢, by (12) can be written as the inverse of a
diffraction formula.

3. SUMMARY

To use these results one must be able to neglect the
singular term ¢,. Neglect of ¢, means neglect of terms
of the order of k(u,,, - 1)'/% and larger, i.e., high fre-
quency terms. The term k=w/c, where ¢ is some
reference sound speed, e.g., the sound speed at the
surface. This establishes a characteristic length
L=x/2m(y,, -1)"/? below which we cannot measure.
The higher the frequency of sound the smaller the
obstacles we can see, but high frequency sound is
rapidly attenuated in many media anyway, so that ne-
glect of ¢, probably yields no worse results than are
now available,

*The author’s permanent address is NRL, This work was ac-
complished while the author was at ARL, and he is grateful
for their hospitality.

'E. Wolf and J.R. Shewell, Phys. Lett. A 25, 417 (1967);

A 26, 104 (1967); J. Opt. Soc. Am. 58, 1235 (1968).

?E. Lalor, J. Math. Phys. 9, 2001 (1968). These papers also
consider in greater detail mathematical questions similar to
those which arise here.

3The harmonic time dependence exp(— iwt) is assumed
throughout,
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After a short review of results which we recently obtained on deformations of Lie algebras associated with
symplectic manifolds, we discuss physical applications and treat some examples with deformed Poisson
brackets. We make explicit a connection between classical and quantum mechanics, and the theory of
Dirac brackets for second class constraints, from the viewpoint of deformation theory. Finally we discuss

the general Dirac constraints formalism.

INTRODUCTION

In previous papers we calculated, using cohomologi~
cal methods, the 1-differentiable deformations of the
infinite-dimensional Lie algebras of functions endowed
with Poisson brackets on symplectic manifolds. This
last problem is by no means purely mathematical and
possesses potentially a large number of applications to
problems in mathematical physics. Here are some
examples:

(1) In a given model, to write down the Hamilton
equations with the deformed bracket. Integrate then the
equations of motion and compare with the nondeformed
case,.

(2) How much unique is the usual Hamilton mechanics
compared with other a priori possible “close”
(deformed) mechanics ?

(3) Can deformation theory of Poisson brackets shed a
new light on perturbation theory relative to the usual
mechanics ?

{4) The Dirac singular Hamiltonian formalism of con-
strained mechanics has been known since a long time
and applied by many authors to construct canonical
formalism for the electromagnetic and gravitational
cases. Two questions arise:

(a) Can one construct the Dirac formalism in a
natural geometric manner ?

(b) Can the Dirac bracket be connected to Poisson
bracket via deformation theory ?

(5) Problems which might be connected with quantum
mechanics:

(a) Existence or nonexistence of unitary represen-
tations of the exponentiated symmetric polynomial ele-
ments of the Poisson algebra.

(b) 1s there any possibility of “interpolating” be-
tween classical and quantum mechanics?

After a short review of the main mathematical results
obtained by us on deformation theory, we try in this
article to discuss, present examples, and solve partial-
ly the above mentioned problems.

I. DEFORMATIONS OF POISSON BRACKETS

Let W be a symplectic manifold, i.e., a connected
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paracompact C* real manifold of even dimension 2%, on
which is given a closed 2-form F such that F"#0 every-
where. As is well known, there are symplectic local
charts on W with coordinates (p,,q,, @=1,...,n) for
which F takes the usual form } ,dp, Adg,. Let us de-
note by TW (resp. T*W) the tangent (resp. cotangent)
bundle to W, and by #(X) the interior product by the
vector field Xe THW) (cf., e.g., Ref. 1). This enables
us to define an important fibre bundle isomorphism

i :TW— T*W by extension from u(X)=—i(X)F which
associates with the vector field X the 1-form —i(X)F.
We denote G = y'(F): The Poisson bracket on N=
=C"(W,R), the space of real-valued infinitely differen-
tiable functions on W, is then defined by {u, »}=i(G)Ndu
Adv) for all u, v e N, and endows N with a Lie algebra
structure. On a symplectic chart the Poisson bracket
takes the usual form 3 (2, udzv — 3gud,») with 3 ,=2/3p,,
and 5&:5/8(10[.

We have been interested in deformations of this Lie
algebra, and therefore, according to the general theory
of deformations of Lie algebras (cf. Gerstenhaber?), in
the Chevalley —Eilenberg cohomology® of N with values
in the adjoint representation, at least in degrees <3.
Little is known on these cohomology spaces in the gen-
eral case. (Very recently some results have been ob-
tained, when the cochains are given by differential
operators and in connection with a specific deformation,
by Vey.?) However, when cochains are given by order-
one differential operators, what we call 1-differentiable
cochains, a complete computation has been given by one
of us,® and this has enabled us® to make a complete
study of the corresponding deformations. These are the
most natural deformations to study since the Poisson
bracket itself is 1-differentiable: This property will
then be preserved under the deformations. We shall see
later another physical motivation for considering only
1-differentiable deformations.

A 1-differentiable p-cochain C with values in N, is
a p-linear alternate mapping from N? to N that can be
written C=A +B, where A is a p-tensor and Ba (p -1)-
tensor, so that on the domain of a local chart {x*}
(f=1,...,2n) of W we have, for u;,...,u,c N, denoting
A(R)=A*, 5,=02(k)=0/0x", and by /4 the alternation over
all permutations of the #’s, with summation over the % ;:
Aluy, ..

cty)=Alky, o k) Bk e e 20k ey,

(1.1)

By, ..o u,) = ABky, . - . ku, 2k, 3k, )uy).
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When B =0, we call the cocycle C=A “pure.”

The coboundary 9C of any C is 1-differentiable if C is
so, and is given by

3C = p (F A p(B) =du(A)) + p ' (du(B)) (1.2)

or, in terms of the Schouten—Nijenhuis brackets’ which
associate with given p-tensor and g-tensor a (p +¢ -1)
tensor in a skew-symmetric or symmetric way (accord-
ing to the parity of pq), with an accordingly modified
version of the Jacobi identity:

3C=(GAB-[G, A]) +{G, B]. (1.2')

It therefore makes sense to speak of the 1-differentiable
cohomology H*(N), with values in N.

If we denote by P*(W, F) (resp. @***(W; F)) the kernel
(resp. the image) of the map HYW)— H?**(W) defined on
the real cohomology classes of W by the exterior prod-
uct by F on the p-forms, then (cf. Ref, 5) for the 1-
differentiable cohomology:

H(N) =P W; F)® HW)/Q*W; F), (1.3)
where the second summand corresponds to the pure
cocycles.

In particular, when F is exact,
HY(N) =H?" (W) & HYW).

A formal deformation of the Lie algebra N is a new
Lie algebra law

[usl)]k’_‘&hrcr(uyv); (1.4)
where C,(u,v) are 2-cochains on N, with Cglu, v)={x,v}.
The formal Jacobi identity can then be written (denoting
by S the sum over circular permutations of », », and
w):

3C lu, v, w)=STCAC (u,v),w) = E (u,v,w)  (1.5),

for all t=1,2, --+, where $‘*’ denotes the sum over
7,5 with » +s=¢ and »s# 0,

If (1.5), is satisfied for t=1,...,¢ -1, the Jacobi
identity is satisfied to order ¢, i.e.,

S{lu, vy, wl, = 0W%) (1.6)

and E, is a 3-cocycle of N: Its class in the third co-
homology space is the obstruction at order ¢ to the con-
struction of a formal deformation of N.

An infinitesimal deformation is given by a 2-cocycle
C, such that (1.6) is satisfied at order ¢ =2,

Now, if we deal with 1-differentiable cochains C,, the
E, are l-differentiable, ® so that H*N) is then relevant
for the obstructions. When the C, are pure 1-differen-
tiable 2-cochains A,, the Jacobi condition (1.5), can be
written in terms of the Schouten—Nijenhuis brackets as

8A,=32,[A,, A ]. (1.5,

We call an infinitesimal 1-differentiable deformation
trivial if there exists a 1-differentiable 1-cochain T,
such that 97, =C, (such a T, is necessarily 1-differen-
tiable if W is noncompact®), i.e., Ty=I+AT, is an
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infinitesimal automorphism of N:
T,[u, U]x‘{Txu, T).U}'—'O()\z). (1.7)

Similarly, a 1-differentiable deformation is called
trivial if the left-hand side of (1.7) is identically 0 when
T,=1+},. A"T,, where the 1-cochains T, are neces-
sarily (as a consequence of the proposition of Sec. 5,
Ref. 6) differential operators when W is noncompact or
when they are local.

If G, is a pure 2-cocycle, we can define an infinitesi-
mal deformation of the symplectic structure by G,
=G +AG,, giving rise to a new Poisson bracket. We call
inessential® an infinitesimal 1-differentiable deformation
that is of this type up to a trivial deformation, i.e.,
such that there exist 7,=I+AT, and G, =1 +G, (G, a
pure cocycle) satisfying

T,[u, v], - (G IAT,uNdT,v) = O(A?)

or equivalently that C, =G, +2T,. Essential is defined
as non-inessential.

Thus the space of infinitesimal 1-differentiable de-
formations, modulo the trivial (resp. the inessential)
deformations, is isomorphic to H*(N) (resp. PYW;F)).
If F is exact and H'(W)# 0 but H*(W)=0=H*W), there
will exist essential formal 1-differentiable deformations
on N [no obstruction will then occur since H3N)=0].

In some special cases, e.g., the cotangent bundle
W=T*M to a n-dimensional manifold M, which is the
most interesting case for physical applications, we
shall have a family of rigorous essential deformations
of the type®

[u,v], ={u, v} +1C,(u, v)

(the Jacobi identity being rigorously satisfied) parame-
trized by a vector space of cocycles C, of dimension
dimH'(M). We shall use these in the following.

The formal deformation built by Vey* (for manifolds
with H3(W)=0) is given by cochains C, that are, in the
same sense as above, (2 +1)-differentiable 2-cochains,
and is not trivial (the class of C, in the cohomology of
N is not trivial); the order is increasing (and C, is of
order 3). On a symplectic chart and for polynomials u
and v in the local coordinates, we can write (27 +1)!C,
as the (27 +1)th-power of the bidifferential operator C,
(the Poisson bracket); the “Vey bracket” is then, for
A =(3%)?, nothing but the Moyal bracket corresponding
to commutators of operators in the Weyl quantization
procedure. This makes the Moyal—Vey bracket inter-
esting, but in connection with quanfum mechanics,

The latter example is characteristic of what occurs if
we allow differentiable cochains of order greater than
one: By construction, if C, is of order «, (which is well-
defined since C, is skew-symmetric), the cochains E,
and C, will be of order (at least) n, = max‘*'(n, +n,—1),
where max'’ means the maximum over #,s with » +s
=, vs#0. Thus the orders will be increasing if some
n,>1 and it is not possible to restrict ourselves to
m-differentiable cochains (defined similarly to 1-differ-
entiable ones) for fixed m. The relevant cohomology
would then be that studied in part by Vey,* which is non-
trivial already in the formal case according to Vey.
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Apart from the mathematical difficulty of performing
a complete study of deformations given by differentiable
cochains of unbounded (increasing) order, there are
some serious physical reasons making the latter not
very suitable for physical applications in classical
mechanics. First, as for Poisson brackets, the de-
formed Hamilton equations

Isa:[H;pa]M Elu:[qua]A (18)
give locally the equation
J;:[Hspa]xaafa+[H’qa]Aa&f (1.9)

for dynamical quantities fe N, The latter could make no
sense for general H’s and cochains C since the right-
hand side in (1.9) involves then (when convergent) an
infinite order bidifferential operator (a kind of pseudo-
bidifferential operator) for which the local character is
lost: f at any point could involve the value of H at other
points in phase space.

Moreover, even if we restrict ourselves to the first
order in A, whenever the corresponding cochains are
m-differentiable with m >1, the connection between the
(approximate) deformed Hamilton equations and a varia-
tional principle of the Helmholtz type in usual phase
space is lost. This also makes the physical interpreta-
tion much more uneasy.

Finally one can remark that Poisson brackets behave
relatively to products like devivations (they have what
one can call a derivation character), namely that for all
u,v,we N

(1.10)

The same formula is true (the products being written in
the above order) in the quantum case, when we are
dealing with commutators of operators in Hilbert space.
Correspondingly, for the Moyal—Vey deformation, a
“twisted” (noncommutative) product, defined with the
exponential of the Poisson bracket operator, has to be
introduced in order that a formula similar to (1.10)
holds in that case. For the deformed brackets (1.4)
with the ordinary product law and cochains C, defining
the deformation, it is easy to see that the derivation
character expressed in (1.10) will hold if and only if the
cochains C, are pure 1-differentiable cochains. The
associated infinitesimal deformation is then inessential.

{uv, wh=2u{v, w} +{u, w}o.

This derivation character has some physical impor -
tance. For instance, if the deformed brackets (1.4)
have it with respect to the ordinary product law, the
deformed local evolution equations (1.9) for f€ N can
be written (at least for analytic H’s) in the global form

=, 1), (1.11)

which is the same as for Poisson bracket. If we want
(1.11) to hold for all such H’s and fc N, then it is also
necessary to have the derivation character. We shall
consider more in details in the next section the de-
formed evolution and Hamilton equations.

1i. APPLICATIONS AND EXAMPLES OF
DEFORMATIONS

The deformations of the Lie algebra of Poisson

1756 J. Math. Phys., Vol. 17, No. 9, September 1976

brackets, and possibly of other Lie algebras associated
with symplectic or contact manifolds, can be physically
relevant, We shall begin with a remark concerning the
deformed evolution equations (1.9). Deformations given
by nonpure cochains (e.g., essential deformations) are
in general not equivalent to the global form (1.11), In
particular postulating (1. 8) we have from (1.9) in this
case, for f=C, a constant, [H,C],#0=C and for f=H
we get H#0=[H,H],: from Hamilton equations (1.8) with
brackets deformed by essential deformations we get a
new mechanics where energy is not necessarily con-
served; the same holds for integrals of motion defined
as quantities commuting with H; therefore the corre-
sponding equations will in general be of a new type, not
obtainable in the usual classical mechanics. Thus a
treatment formally similar to the usual one may de-
scribe entirely new situations. This formal similarity
would then provide a “deformed canonical formalism”
that might be relevant for extending this kind of treat-
ment to field theory and for quantization. It would
therefore be of interest to study more in details the
underlying physics relative to the deformed brackets,
Such an approach might also be useful in cosmology.

. Moreover, instead of treating evolution equations
f=1H,, /} for dynamical quantities #, relative to a per-
turbed (and possibly not very precisely known) Hamil -
tonian H,, it might be advisable to consider the de-
formed equations (1.9) relative to a nonperturbed (e.g.,
free) Hamiltonian H, but with deformed Poisson
brackets. In this framework we may express as a de-
formation the dependence on A of the dynamical quanti-
ties f, i.e., replace f by a formal series f, in the
above-mentioned equations. We shall thus compare the
two treatments when H also is given by a formal series
Hy=H+37 XV,

In order to make these ideas more concrete we shall
first compare the treatment with perturbed brackets
with that involving a perturbed Hamiltonian, and then
present some examples, in classical mechanics, of
“motions” relative to essential deformations.

A. Deformations of Hamiltonians

(a) In this approach, we want to replace the treatment
of a system described by a perturbed Hamiltonian H,,
with the usual Poisson bracket formalism, by that of a
system described by the free Hamiltonian H in the de-
formed Poisson brackets formalism. In accordance with
our general treatment of deformations, we shall write
(with V, € N):

H,=H+ 2, \NV,=H+V, 2.1)
r=1

In addition we shall write the dependence on A of the
dynamical variables as a formal deformation, i.e., as
a formal series

wy=u+ 2 N, 2.2)
r=1

with #,u, € N, which would in particular express (on a
given symplectic chart) a possible formal change in the
coordinates (p, and ¢q,).

We then require that the Hamilton equations for the
dynamical quantities u, (with, e.g., u=p, or ¢, on an
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open chart) with perturbed Hamiltonian H,

= {Hm ux}

should have the same dynamical content as the deformed
equations which we shall write only in local coordinates:

2.3)

72A:[H:pa]kaall'k +[H’qa]xa&u)¢- (2-4)
It is easy to see that (2.4) is equivalent to the global
form

a,=[H,u,], 2.5)

if and only if the coefficients B} of the nonpure part of
the cochains C, satisfy

Bja,H=0. (2.8),

In particular if C,=3T, is a coboundary, with T,=a;?,
+b,, the condition (2. 6), becomes {b,, H}=0: The non-
pure part of the cochain must be given by a symmetry
of the free Hamiltonian. Moreover, if (2. 6), is to be
satisfied for all H, we see that C, must be a pure 1-
differentiable 2-cochain (this has been derived earlier
from the related ‘“derivation character,” relatively to
products, of the deformed bracket),

Comparing both values of #, in (2.3) and (2. 4) we get
Ve ub + 2V, u,}

=2,"(CH, po)gus +C(H,q,)35u)

+C,(H,p ), u+C,(H,q,)05u. 2.7,

These relations should hold for all «, #,, and {. Then
applying successively (2.7), with ¢’ </ to the u, we see
that they are equivalent to

CH,q,)dp, -C,H,p,)dq,=dV,. (2.8),

This implies that the cochains C, must satisfy, in addi-
tion to the deformation conditions (1.5),, the usual
integrability conditions for such systems.

If (2.6), is satisfied (e.g., if the cochains C, are
pure), (2.8), can also be written

Ve, up=C,H,u). (2.9),
In particular, for #=H, we obtain
{v,,H}=0; (2.10),

the allowed perlurbations must then be constants of
molion fov the free Hamiltonian. This still leaves room
for interesting perturbations. For instance, since the
squared linear momentum 2H=Y3_ pZ ig a Casimir
operator for the Euclidean group SO(3)+«R?, we can take
for such an H the angular momentum L? or L, as a
possible perturbation V.,

If we are looking for infinitesimal deformations, we
may restrict ourselves to the first order (in ). How-
ever, if we want these deformations to be rigorous, we
have still an additional condition for the cocycle C,,
namely

SC(Ci(u, v), w) =3C (u,v,w)=0, (2.11)

In this case, as we shall do in subsection B, it seems
preferable to express functionally the dependence of «
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on A, in particular in (2.4). When H, and u(A) depend
analytically on A (at least for small values of |Al), this
does not change the compatibility conditions.

(b) Let us now consider more in detail the case
[suggested by (2. 6),] where the cochains C, ave puve.
Denoting @, = u(C,) and considering the Hamiltonian
vector field Z, = u"Y(dH), the compatibility conditions

(2.8), can be written
(zZ)a,=-dV,, (2.8"),

and therefore the integrability conditions for this equa-
tion become, since the Lie derivative / =di +id,

L(Zya,=iZyda, (2.12),
and in particular since C, is a cocycle,
[(Z)a, =0, (2.12),

we have thus obtained the direct part of:

Proposition: Any sequence of pure 1-differentiable
2-cochains C, (t=1,2, « -+) satisfying the deformation
conditions (1.5’), and the integrability conditions (2.12),
for a given H can be associated with a deformation of
the “free” Hamiltonian H by “perturbations” V, com-
muting with it in such a way that the equations of mo-
tion (2. 3) and (2.4) will be equivalent; and conversely
(locally).

In particular, any pure cocycle C, satisfying (2.12),
defines an infinitesimal deformation of the Poisson
brackets in such a way that the infinitesimal deformed
equations (2.4) are (to the second order in A) equivalent
to perturbed equations (2.3) with H,=H +AV,, V, com-
muting with H, and conversely (locally).

To complete the proof, we have to find a deformation
of the Poisson bracket equivalent to a perturbation of a
given Hamiltonian H by given V, commuting with H, We
shall start with the first order.

Let V, be given commuting with #, and let us look
locally for C, such that (2. 8), is satisfied. We may take
local coordinates such that Z; =1 and Z{, =0 for j#1.
Then 3,V,=0 and if we take for a=p(C,) a closed 2-
form such that @;;=2,V, and a,, ({,j#1) is independent
of ', the corresponding C, is a solution.

For the general case, given the V, commuting with H,
we shall build @, = u(C,) by induction. The deformation
condition (1.5'), gives us that da, is a known 3-form
(expressible in terms of the @, for » <t). Locally, we
may choose a 2-form y, such that dy, =da,. We thus
have to look for a closed 2-form B, such that
i(Z ) (B, +7v,) is the given closed 1-form -dV,. As above
with the same local coordinates, dropping the index ¢
for simplicity, we shall select a 2-form B such that
B;,=9,;V +v,, and since 8 must be closed, such that the
Bij (i,j # 1) SatiSfy alﬁij - aiﬁlj - ath' =3 i~ aj)’ip
which expresses their x! dependence; their dependence
on the x’ (j#1) is then subject to the only condition that
B is closed when x' is taken as a parameter. In such a
way we may successively construct o, which satisfy
automatically (2.12), and define a deformation.

(c) In particular, for a two-dimensional manifold W,
taking for C, a coboundary (which can always be done
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locally)
Cylu,v) =28T(u, v) = (4 +b){u, v} +ufb, v} +vip, ul},
(2.13)

where T=a,9, +a;0; +b is a 1-cochain and A =2,a,
+dja;z, the integrability conditions of the infinitesimal
compatibility relations (2.8),, reduce here to

{H, A}+2,(p{H, b} +o4(q{t, b)) =0.
Taking into account (2. 6),, we see that the coefficients
of C, must satisfy

{H,A =0={H, b}. (2.14)

Moreover, since here (2.11) writes {4, b}Su{v, w}=0,
the coboundary C, will define a rigorous (trivial, in the
sense of deformation theory) deformation if in addition
to (2.14) we have also {4, »}=0. Since here we have
only one independent constant of motion, we shall thus
take A and b functions of H, in which case V will also
{(as expected) be a function of H: Any (differentiable)
function V{H) can be obtained in this way.

Similar conditions can be obtained for a general
cocycle (not necessarily a coboundary): In particular
{H,A}=0 is the condition for a pure 2-cocycle C,(u, v)
=A{u, v} to define a rigorous (inessential) deformation
compatible with a deformation of H by V(H).

{d) In the general case (dimension >2) the conditions
take a more complicated form, but the basic principle
is the same: Perturbations of Hamiltonians (by integrals
of the free motion) can be related to deformations.

For example, let us take C,=37T, T'=3%,a,8; +b,
and the free Hamiltonian H=3%3"_,p%. Let us, more-
over, specialize to the case 2»=4 and b =0, so that
(2.10), is trivially satisfied. Instead of looking for the
most general solution of the integrability conditions
that ensure the existence of a V,, we shall try a parti-
cular solution, e.g., V,=—{p,a, +p,a,) and look for the
coefficients of T. Starting with a; depending explicitly
on g, and g, and some arbitrary functions, and satisfy-
ing (p,31 +p.03)a;=a, # 0 but (p,d; +p,95)°a; =0 (which is
a compatibility condition), we shall be able to find a,
such that the above-given V, is a solution and is given by
(197 —pa23)a, = —2p,0;a,; then we can choose any as
satisfying p,8za;=p,85a, +9;(p, a,) and express
{V,,H}=0.

For instance, with a;=k,(p)¢: +k,(p) g% we may have
V, of the form V, =K, (p)g, +K,(p)g, +p,K(p) (k,,k,, and
K arbitrary functions of the p, the first two determining
K, and K,). In this case {H, V,}=p,K, +p,K, so that we
may choose k, and &, such that {H, V,}=0. One can also
try to find solutions such that V, =0 but including terms
v, (for n>1).

B. Rigorous essential deformations

As mentioned in Sec. I, for a cotangent bundle W
=T*M with the natural symplectic structure, we have
essential regorous deformations if 4, =dimH (M)+0.
They are built as follows. We denote by dw (w
=37 _,p*dg, on a canonical chart) the symplectic form
of W, and set Z = - pu Y (w) [locally, Z=5p,(3/3p,)]. We
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denote by 7 the projection W=T*M — M and define a
vector field B= p"(7*8), where Bis a closed nonexact
1-form on M (the equivalence classes of such Bis a
b,-dimensional space)., Then (with summation on
i,j=1,...,2n) we have the following rigorous essential
deformations:

[w,v],={u, 0} ~NZ'B/ - Z7B)a ua v

+ABHud; v —vd,u), (2.15)

or in canonical coordinates, if =37 _,B*dg, on M:
[, 0], = (9 ud g0 = 5B, v) = M(P*B*' = p*'B*)2 u . v

+AB(ud v - 02 ,u). (2.157)

We shall consider in particular the case of cyclical
one- or two-dimensional configuration spaces M, i.e.,
M=T" (the circle) or M =T? (the torus). In the first
case, for B=dp(9,=03/2p, d;=2/0g):

[u, 2], = (8,007 = 35ud,v) + Mud,v = vd,u). (2.16)
In the latter case, for 8=B,dq, + B,dg,, we have
[u', o], ={u, v} +AB, C,(u, v) +AB, Cylu, v), (2.17)

i.e., a combination of two deformations, given by

Cilu, v) =p,(3,u8,0 — 3,ud,v) + (ud v —vd u),
2.1
C,(u,v) = —p,(8,ud,v —2,ud,v) +(Wd,w —vd,u). 2.18)
Formulas similar to (2.17) and (2.18) can be given for
M=T"
(a) Free civcular motion: M=T*, H=35p?: In this
case, the unperturbed equations give p =p,, g =py +q,.

However, with the deformed brackets (2.16), the de-
formed Hamilton equations

P=-ap*=-2H,
G=p(1 —xg)=p +qH/H
give p~ =3 +pgt, Ag=1 —cp® [c =(1 — rg,) p3?]; hence

p—0and g —2r"" when [ —~ . Qualitatively, the motion
is similar to the asynchrone pendulum.

(b) Physical pendulum: M=T', H=3I"p* +R(1
- cosg): Here, the usual Hamilton equations b
=-Rsing, §=pI"" give § +RI'sing =0, whence the
usual solution

I =ty= f (2RI cosq +C)/%dg (C = const).

(2.19)

With the deformed brackets we have
$=—Rsing +1[R(l — cosq) =51 p?],
q' :(1 _AQ)pl-ls

whence § +314%(1 =xg)™ +RI™(1 = rg)[sing —A(1 —cosq)]
=0. We have here (for appropriate values of 1) a kind
of “viscosity” term in 4% which cannot be obtained in

a natural way with the usual Poisson brackets. This
friction term is not so surprising, since with essential
deformations energy is not necessarily conserved. The
classical integration procedure® gives the solution
(which coincides with the usual one for A =0):

t=ty=[{1 =xgP*[C-2RI" [ (1 -2g)
xsing(l - Mg 3q)dq|}™/*dq.
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As an approximation, to the first order in g, we obtain
g°>=C(1 = 3rq) + O(¢g?) whence ¢ ~C(t —t,) +2/3x for ¢ in
the neighborhood of £, -2/(3Cx).

(c) Free Hamiltonian on the torus: M=T% H
=3(p? +p%): The unperturbed motion is uniform on a
straight line on the torus, considered as a rectangle in
IR? with the usual identifications. The deformed brackets
(2.17) with A, =AB,, give (a=1,2)
ﬁaz_AaHy q‘azpa +qai{/H’
which can be integrated, with constants ¢;,, C, and
=X p,=A,#0, if we suppose that A*=x% +22# 0 and
define A,,, as 1, for a=1 and -2, for =2, to

AZp, ==kX,,, +hA, cotg[zk(l —1,)],
A2 gy =A, +A,., cotg[3R(t —t,)]
- (%k Aa +1 +Aaca) Slnz[%k(t - to)]

[1f =0, we get separation of variables, and for each
a the same motion as in case (a) above. ] Thus for
t—~t,, at least one (both if A;x,#0) p,— =, and g, —~ =,
but q,/q,—~ 2 C,/2,C, and p,/p, — Ay /X, if X, #0: The
motion is increasingly accelerated towards a straight
line, in the R? picture of the torus; afterwards we are
in the situation where £ =0, and back to the type of
motion described in (a), but on a line on the torus.

I1l. SOME REMARKS ON THE CONNECTION
BETWEEN CLASSICAL AND QUANTUM MECHANICS

In this section, we shall introduce a structure which
may provide a continuous link between classical and
quantum mechanics and discuss the correspondence
principle from the point of view of Lie algebra repre-
sentation theory, namely representations of the dynami-
cal Lie algebra N and their implications for the notion
of observable.

(1) Let us write an expression for a bracket

[f)g]*:(l_)\){fsg}"')‘i[f,g]’ (3-1)
the precise meaning of which will be specified in the
following.

(a) If we take for f and g differentiable functions on
a symplectic manifold, the first bracket in the right-
hand side of (3.1), which we shall call the braces, being
the Poisson bracket and the second one (the square
bracket) being the commutator —which is identically
zero—we get, of course, the bracket of classical
mechanics with a factor. We get here no deformation of
this bracket.

(b) On the other hand if F and G are differential
operators with polynomial coefficients in the configura-
tion variables g, that are formally symmetric, ¢ times
their commutator [F, G] has the same property. For the
braces in (3.1) we shall take the properly symmetrized
differential operator {F, G}” obtained from the brutal
application of the Poisson bracket operation to F and G
considered as functions f and g of the p, (identified with
-idz) and g,. This is usually done (see Ref. 9 and ref-
erences quoted therein) by using some type of ordering
(e.g., Weyl). This procedure may also be applied to
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suitable functions of p, and ¢g,. In this case one usually
gets that the two operations give the same result, so
that for all A the new bracket (3.1) will be that of quan-
tum mechanics. It should be mentioned that one of the
difficulties arising here is due to the fact that there are
are'® formally symmetric differential operators with
polynomial coefficients having no self-adjoint extension
in L%M), M being the configuration space (with coor-
dinates q,).

(c) Let us now consider the “mixed” situation. From
what we have mentioned above, one introduces a map-
ping 6 from a subset (e.g., of polynomials) of the Lie
algebra N of C* functions in p, and ¢q, into a space P of
(differential or sometimes pseudodifferential) operators
in, e.g., the Hilbert space L*M), in such a way that,
the squared bracket being the commutator, {67, 6g] is
equal to {67, 6g}” when f and g have the right properties.
The mapping 6 is usually called a quantizalion.

More precisely, let P, be the space of real poly-
nomials of degree <k (£=0,1,2, :+-) in (- i3;) with real
polynomial coefficients in the ¢, that are formally
symmetric differential operators, P=U P, is a Lie
algebra with the Lie law (a, ) i~ i [a, b] (for a, b c P) and
the P, define a filtration such that i{[P,, P,]C P,.,.,. We
shall denote P*=P,/P,_,, with P°=P, (we consider only
the principal part of the differential operator); gr(P)
=@ P* is the graded algebra associated with P. In fact,
P can be viewed as a real form of the complex envelop-
ing algebra {/c(g,,.,) of the nilpotent Weyl Lie algebra
generated by 2n +1 elements p,, q,, and 2, the Lie
bracket of p, and g, being z and all others vanishing, in
the usual Heisenberg representation: The filtration and
graduation then become obvious. !* The space N’ of real
polynomials in commuting variables p, and ¢, can then
be viewed as a real form of the corresponding symmet-
ric algebra.

We then define the mapping 6: N’ — gr(P) exactly as
the canonical mapping between the symmetric algebra
and the graded algebra associated with the filtered
enveloping algebra'!; With every monomial we associate
the image in gr(P) of any symmetrized differential
operator obtained by replacing p, by (-i93). The re-
verse operation (replacement of —i3; by p,) is the
symbol mapping ¢, which can be defined on P but is
best defined in gr(P).

We are thus led to define the new bracket of the type
(3.1) in the direct sum N'@®gr(P) as follows, for
f,g€ N’ and F,Gc gr(P):

[f+F, g+GlF=(1 - {f+0oF, g+0G}

+rilor +F, 6g+G]. (3.2)
From the definition it follows that this bracket satisfies
the Jacobi identity. For A =0 we have the bracket of
classical mechanics by restriction to N’, and for x=1
we have the bracket of quantum mechanics by “restric-
tion” to suitable elements of P: we have here defined a
kind of interpolation between classical and quantum
mechanics.

Remark: We might here take for P also operators on
functions of p, and q, in several ways. For instance we
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may represent p, by —igdz +(28')'p, {or by -iB;
+8'p,) and ¢, by —if'd, +{28)" g, (or respectively by
B'q,), so that the commutator is again ;. This would
keep both variables in the functional space and permit
us to consider N’ also as acting in this space by multi-
plication. We have here what can be called a
prequantization. Replacing 1 —A by 1 in (3.2) we would
thus get a kind of deformation of the Poisson bracket
algebra N’, considered as an algebra of multiplication
operators, to a more general operator algebra having
some features of the quantum mechanical algebra.

A similar prequantization procedure has been given
by R. Raczka in connection with quantum field theory
and gives, for quantum mechanics in the case 2n =2,

fr=F=f=5qa, f+p2,0)=id,f2,=-2,f3,).

(2) Some rvemarks on the vepresenlations of N in
Hilbert space: These remarks are based on a recent
result which we shall quote here.

Lemma (Arnal*®): Let G be a real Lie group with
noncompact Lie algebra and enveloping algebra //. Then
there exists a Hermitian element « in // such that, for
any unitary representation U of G with faithful differen-
tial dU on the Lie algebra and for any domain D of
differentiable vectors dense in the Hilbert space of the
representation and invariant under U(G), the restriction
of the operator dU(u) to D is symmetric with no self-
adjoint extension.

In particular, for the Lie algebra g, of the Heisenberg
group, one can choose™ in {/(gs), u=iz{{p,q),,q,
where (p,q),=pq +qp is the anticommutator: dU(«) has
deficiency indices (0,1) in any faithful unitary irreduc-
ible representation of the Heisenberg group, and there-
fore'® also no self-adjoint extension in any faithful rep-
resentation of g, that is infinitesimally unitary in the
sense of Harish-Chandra, i.e., integrable to a unitary
representation (of the Heisenberg group). The same
holds for the Weyl algebras g,,,,. But all representa-
tions of {/¢(g,,.:) that are scalar on the center z (e.g.,
the irreducible ones) are representations of the Poisson
subalgebra N’ of N consisting of real polynomials in the
po and ¢, endowed with the induced structure of both Lie
and associative (non-Abelian) algebra: We consider here
the flat case W=IR*', We shall call these representa-
tions infinitesimally unitary if the symmetric elements
are represented by essentially self-adjoint operators.
The following result is therefore true:

Theovem: There are no faithful infinitesimally unitary
representations of the Poisson algebra N’ in the flat (or
algebraic variety) case.

One may mention here that a faithful (not infinitesi-
mally unitary) representation of the Lie algebra N by
differential operators defined on vector fields, globally
on W, has been found by Kerner'® but only for very
particular sympletic manifolds with curvature - FQ® Id.

Moreover, the above example of dU{u) shows that
there are symmetric polynomials in p and g that are nof
observables in the strict quantum-mechanical sense.
Therefore, either one has to change the usual meaning
of observables and include also, e.g., maximal sym-
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metric operators among observables, in which case the
one-parameter unitary group structure has to be re-~
placed by a semi-group Structure—this would be an ex-
tension to the one-parameter case of the motion of local
(nonintegrable) representation of Lie algebras intro-
duced by two of us (M. F. and D.S.)"; or one has to give
criteria excluding some symmetric elements of N from
the family of quantum mechanical observables. In both
cases, and in addition to other reasons that may suggest
it also, a veassessment of the motion of obsevvable
seems to be needed.

IV. DIRAC BRACKETS (FOR SECOND CLASS
CONSTRAINTS) AND DEFORMATIONS

Let N be the Lie algebra (for Poisson brackets) of the
differentiable functions over a symplectic manifold W,
and let k,e N (i=1,...,5) be a set of second-class con-
straints in the sense of Dirac (¢f., e.g., Ref. 14}, so
that the matrix ({k;, ,}) is regular and has an inverse
(C;;). Then the Dirac bracket relative to this situation is
defined, for any #,# <€ N, by

(, v]=1{u, v} +Clu, v)

with a 2-cochain C(u, ") given by (with summation over
¢ and j)

(4.1)

Clu,v) = ={u, ks €y 1k, v} (4.2)
We first notice that, for the bracket [u, v} ={u, v}
+x Clu, v), we have

S[[“)UK,W},{:(A - I)S{u:ki}{v’kj}{cij:w}y

where S means summation over circular permutations
of w,v, and w< N, which shows that in general the
Jacobi identity will be satisfied only for A =0 (Poisson
bracket} and A =1 (Dirac bracket). We shall, however,
relate the Dirac bracket to deformations.

(1) Some special cases: We limit ourselves here to
two constraints k., k, on R*":

Clu,v) = ({”; }?1}{/22, ”} ~ {u, kz}{kn 7’}){k1’ kz}q'

(a) If we take k,=q,, ky=p,, then Clu, ) ={u,n};, the
Poisson bracket relative to the subspace R® with
coordinates (p,,q,) and {«,v] is the Poisson bracket
relative to the complementary subspace R with
coordinates (p,,q,, @#1). In this case, the above de-
fined bracket [u, 7], is a deformation (for all values of
A). The restriction of the Poisson bracket to a symplec-
tic submanifold defined by two conjugate constraints
({#,, .} =1) is thus an instant of a rigorous and first-
order deformation.

(b) Let us now choose k, =g, — uf(p), ko=p, — wglq).
Then {k, k,} = p*3, 7254 ~1, whence a formal series
expansion

Clu, v)={u, v}, +paT (u, ) +Z}z wC(u, ), (4.3)
re

where we can choose for instance 7,=g2, + f2; and
where the cochains C, can be computed by multiplying
the polynomial of order 2 in p expressing {k,, k,} Clu,v)
and the power series of {#,,%,}"'. The first two terms
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in the right-hand side of (4.3) can also be written
3T(u,v), with T=ad, +bd;, a=k, —3p, and b=k, —3q,
for instance. We then get here, for every u, an instant
of a two-parameter deformation (n-parameter deforma-
tions can be defined along the same lines as we did for
one-parameter ones).

(2) General formal case: Lie algebra brackets and
deformations: Let us consider the vector space N¥
=R[[W]] of formal series in the p, and ¢,, coordinates
of W=IR* endowed with the Poisson bracket relative to
the canonical symplectic form F=3 ,dp,Adg,, and let
(4.1) be a new Lie algebra law on the same vector
space, which we shall suppose also 1-differentiable,
i.e.,

C is 1-differentiable pure 2-cochain on N¥; in

particular, C(u,v) = - C(v, u). (4.4a)

9C(u, v, w) =SC(C(u,v), w) = E(u, v, w), (4. 4b)
where 8C is the coboundary of C in H*(N¥), which ex-
presses the Jacobi identity for the new law.

On the other hand, a formal 1-differentiable deforma-
tion of the Lie algebra N¥ of formal series is given by
a new law (1.4) with cochains C,, that we shall suppose
here pure 1-differentiable satisfying the relations (1.5),
for all £. The following problem then arises:

Problem: Can we consider formally all laws (4.1),
and in particular the Dirac bracket law, as instants of
a formal deformation (1.4), for a specialization, say
r=1, of the parameter ?

From relations (1.5), we see that there is a high
indetermination entering at each level {, since every C,
can be modified by a 2-coboundary T, without altering
the relation (1.5), for the given ¢. Moreover, if all
relations (1.5), are satisfied, then the formal sum C
=3 7. C, satisfies (4.4). This formal sum is defined on
formal series u,v € N¥, at least as long as their coeffi-
cients are not given specific numerical values (we shall
not enter here into the convergence problem for the
coefficients, since we limit ourselves to the formal
level). We can thus define a map 0:{C,}+ 3 C,=C from
the space /) of sequences {Ct} of formal 2-cochains
satisfying (1.5) to the space A of formal 2-cochains C
satisfying (4.4). The above mentioned problem will then
receive a positive answer if we prove:

Proposition: The map 0 :{C,} ~ C=3C, is onto.

Indeed, let us write, with summation over ,j
=1,...,2n and over multi-indices (k) =(ky,...,k,,),
k;= 0 integer, and with x**'=exp(k, logx,) « - -
exp(k,, logx,,) and 1kl =3, k;:

u=upx*®, Clu,n)=A78,udv
and similarly

Clu,)=A"3,ud,n, Tu=ald,

where AY =(4%),,x* and similarly for A} and o/

(= 1).
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We must therefore have
(A”)(k):ZIt(Atij)(k)-

Moreover, the condition (4.4) can be expressed as a
series of relations between linear combinations of the
(A™) 4, and of the (A%),,(A"%),, with |k| = 1Al +|1].
The condition (1.5), for a given ¢ is expressed by the
same relations but between (A7), and (42%),, (A7),
with summation over vy and z satisfying i=y +2z, If
cochains C, satisfying the latter conditions are found,
the former will be automatically satisfied for C=}C,.

But Poincaré lemma (triviality of cohomology for
closed differential forms) is true in the formal case,
and thus H° for the 1-differentiable cohomology of N¥
is trivial (this follows from the proof in Ref. 5).
Therefore, if (1.5), is satisfied for y <¢, the cocycle®
E, can be written as 9C, for some (nonunique) C,. These
cochains can then be found successively when we start
with an arbitrary cocycle C,.

Now the space of the (4"),,, considered as coordi-
nates in a vector space, for all (k) with |%] < &, a fixed
finite number, is finite-dimensional: They define a point
on an algebraic variety in a finite-dimensional space.

But the (4/%),, are defined only up to an infinite num-
ber of arbitrary coefficients (al),, with » < ¢ and where,
for fixed (&), only (h)’s satisfying |21 < k] +¢ will
appear. We can therefore find (4Y),,, satisfying rela-
tions (4.5) for all (&) with [k| <k, fixed, in an infinite
number of ways for any given (4'),,. We can similarly
continue this procedure for another set of (k)’s without
altering the already constructed {4 7),,, and so on,
whence the surjectivity of 0. We have thus proved that
all laws (4.1) with cochains C satisfying (4.4) ave, in
the formal case, instants of deformation. In particular:

Proposition: The Dirac bracket law can be considered
as an instant of a formal deformation of the Poisson
bracket law on formal series.,

Remavk: If we suppose that the constraints form a
Lie algebra, we can consider {ké, kj} as a new constraint
k. We set ky=2k]. For A=0, the constraint k,, ex-
pressed with k], disappears. For A#0, we redefine
Ci;=2AC;: Then C(u, v) =AC'(u,v), where C’ has
same form as C but with primed quantities, For r#0,
we still have Dirac bracket; if A— 0, we get the Poisson
bracket, which makes thus N appear as a coniraction
of the Dirac bracket algebra (when the constraints
vanish),

V. FURTHER REMARKS ON DIRAC BRACKETS AND
THEIR RELATION TO THE NEW NAMBU DYNAMICS

A. Dirac approach

Let (W, F) be a symplectic manifold of dimension 2#,
N its dynamical algebra (C* functions, with Poisson
bracket). Let C, be,a subset of N, called the set of con-
straints, which we shall here suppose defining a sub-
manifold M of W of codimension k£, the common null set
of all functions in C, (if necessary, we modify W so that
this is the case). Without loss of generality, we may
then suppose that C, is a vector subspace of N. In the
terminology of Bergmann and Dirac (cf., e.g., Ref,
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14), a basis of C, will be the set of both primary and
secondary constraints, and is supposed finite-dimen-
sional. Dirac'? then calls weakly null quantities all
functions in N® C,, i.e., linear combinations of con-
straints (null on M) with arbitrary coefficients, and
first-class quantities all functions having weakly null
Poisson brackets with all the constraints. He thus in-
troduces the “normalizer, ” the space of first-class
functions:

B,={fe N;{f,p}e N® C, for all ¢ € C,}.

The first-class constraints form then, of course, the
h-dimensional space A;=B;N C, and all others are
called second-class. Dirac’s procedure (Ref, 14, p. 38)
then amounts to choosing a basis {& j} of a subspace
supplementary to A, in C,, which is necessarily of even
dimension k - %. These constraints enable him to define
his new bracket by (4.1) and (4.2), which is nothing but
the Poisson bracket on some symplectic submanifold
(W, F) of codimension (k-k) of (W, F), a “second-class”
submanifold, and thevefore satisfies trivially Jacobi
identity (no computation is needed). From the construc-
tion it is obvious that the intermediate manifold W is
not uniquely defined once C, is given, except, of course,
if all constraints are second-class (M = W),

Moreover, as mentioned by Dirac (in a somewhat un-
precise manner), the physical states are “overde-
scribed” by M since with first-class constraints are
associated canonical transformations which do not affect
the physical state. The latter has in fact 2n -~k -7 de-
grees of freedom.

B. Geometric description

While for practical purposes the above-mentioned de-
scription is often more appropriate, it may be of in-
terest to give it a more intrinsic formulation. This was
given partly in Ref. 15, and with a somewhat different
interpretation recently by one of us (A. L., Ref. 16).
We shall give here the main results of the latter. In-
stead of C, one considers the spaces C, of all functions
which are constants on M N U, U being any chart do-
main on W intersecting M, and instead of B, one in-
troduces the space B, of all functions f such that {f, ¢}
is zero on M N U for all ¢ € C,, which is a Lie sub-~
algebra of N with A, =B, N C, as an ideal.

One then supposes that the restriction to M of the
2-form F has fixed rank 2n —k ~k. The integrable dis-
tribution of k-planes (in all x& M)

N, ={v e T(M); i(») F| ,(x)=0}

defines a foliation on M, and thus a quotient space M
which we suppose here to be endowed by the projection
p 1 M— M with a (2n ~k —h)-dimensional manifold struc-
ture such that p is a submersion. F then defines in a
natural manner a symplectic form F on M and (M F)
is the manifold of physical states in the sense of Dirac.

We say that M is first-class if 7 =%, and second-class
if =0. Then it can be proved's:'® that, under the above-
mentioned hypotheses, there are second-class submani~
folds (W, F) of (W, F) of codimension # ~#, such that M
is a first-class submanifold of (W, F). This is the
analog of the Dirac procedure described above. The
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Dirac bracket is then the Poisson bracket on W defined
with the G associated with the manifold (W, F).

C. Relation to Nambu dynamics

Recently, Nambu'” has proposed a new structure,
which might be connected with a new mechanics, Bayen
and one of us (M. F., cf. Ref., 18) have shown that it
contains the same dynamical informations as a singular
Hamiltonian mechanics. For instance, in the most in-
teresting (and most extensively studied) case of a three-
dimensional space, it has been shown'® that this space
can be linearly imbedded into a six-dimensional phase
space W, with three constraints. There are two second-
class constraints, which appear in the Dirac bracket,
and one first-class constraint. In view of what has been
said above, equivalent but more involved (nonlinear)
imbeddings can be exhibited for which there will be only
one first-class constraint, in symplectic manifolds w
of dimension four. This is exactly what has been done
by N. Mukunda and E.C.G. Sudarshan.'® In both cases,
the arbitrariness due to the first-class constraint
appears through an arbitrary time-rescaling (the func-
tion » of Ref. 18), since classical mechanics is in fact
done in the product of phase space by the time axis, or
more generally in a “canonical manifold” in the sense
of Refs, 20 and 21.
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The s-wave van Leeuwan and Reiner equation for the Woods-Saxon potential is solved. Analytical
expressions for the off-shell Jost solution and Jost function are derived. The results are used to obtain the

T matrix.

. INTRODUCTION

Recent interest in the two-particle T matrix has
been stimulated mainly by the discovery of Faddeev!
equations. Particularly, the off-shell two-body T
matrix elements happen to be the main input for the
three-body equations of Faddeev, The off-shell two-
body transition amplitude also plays a significant role
in the theories of nucleon—nucleon bremsstrahlung,
nuclear matter,? and finite nuclei. *

The purpose of the present paper is to obtain the s-
wave part of the off-shell two-particle 7 matrix for the
Woods—Saxon potential which is of importance in
nuclear interactions., We do this by first obtaining the
off-shell Jost solution and Jost function for this prob-
lem. Our derivation will be based on the differential
equation approach of van Leeuwen and Reiner® to off-
shell scattering as recently used by Fuda and Whiting,
In this approach the T matrix is obtained from an in-
homogeneous form of the Schrodinger equation in which
the inhomogeneous term represents a departure from
elastic scattering. In other words, the equation is
characterized by two momenta k and q, where K is an
on-shell momentum related to the energy by E =%* and
q is an off-shell momentum, When q =k, the equation
reduces to the conventional Schriddinger equation. The
solution of the van Leeuwen—Reiner equation has some-
times been called the off-shell wavefunction. '

According to Fuda and Whiting® the off-shell Jost
solution f(%, g, ) for I =0 satisfies the inhomogeneous
equation

2
<k2 + % - V(V)>f(k, q,7)= (k" - 4*) explign). @)

Equation (1) has been written in units in which #%/2m
is unity. In close analogy with the theory of the
ordinary Jost function, ® the object f(k, g, 7) satisfies
the asymptotic boundary condition f(%, g, %) ~exp(ig7).
Its behavior near the origin determines the off-shell
Jost function. The off-shell Jost solution f(k, g, 7) and
Jost function f(%, q) give the appropriate on-shell
quantities in the limit ¢ —+ k. It is of interest to note
that the regular solution ®(k,q,7), which satisfies the
inhomogeneous Schrodinger-like equation with

(%% - %) sing# as the inhomogeneous term, can be ex-
pressed in terms of the functions f(k,+¢q,7) and
Sflk,v) [=f(k,k,7)]. The regular solution is given by®
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(b(k’q;,}’):‘ %”qT(k’ q, S)f(k,/}’)
+(1/2) [ fle,q,7) - flk, = q,7)], @

where T(k,q,s) is the half off-shell T matrix. It satis-
fies the relation

T(k,q,s)=[fk,q) - flk, - 9))/miqf (k) (3)
with
s=k+ie, <1,

In these equations the functions f(%,#) and f(&) stand for
the ordinary Jost solution and Jost function
respectively:

f(k,”}’) :f(k,k,’}’), and f(k) :f(kyk)- (4)
In terms of ®(%,q, ) the off-shell T matrix is
T(b,0,5)= o fo dr sinpr V)®(k, 4, 7). (5)

Looking at Egqs. (2), (3), and (4), we see that we must
first try to obtain suitable analytic expressions for the
off-shell Jost solution and Jost function in order that
we may use Eq. (5) to derive the off-shell T matrix. In
Sec. II we derive expressions for the off-shell Jost
solution and Jost function for the Woods—Saxon poten-
tial. In Sec. III we use these results to obtain the T
matrix,

11. JOST SOLUTION AND JOST FUNCTION
The Woods—Saxon potential is given by
V(r)== Vol +exp[(r - R)/al}", (6)

where R and @ are nuclear radial and diffuseness
parameters and V; the strength of the potential. Insert-
ing Eq. (8) in Eq. (1), we get

AN /s fle,q,7)
art 1 +exp[('V-R)/a]) 4

= (k* - %) exp(igv). M
By using the transformation

z=1/{1+exp[(r - R)/a]} (8)
Eq. (7) gives

2,2 2

(ca-Gra-20 L + B2 ) fq,2)

=a’(k? - ¢*) exp(igR) (1 — z)9e-1z-teart, (9)
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To reduce the left-hand side of Eq. (9) to a known form,
we now consider the corresponding homogeneous equa-
tion. We proceed as follows.

(i) We note that for large » (i. e., for small z) it has
a solution of the form z-*** regardless of the values
of the ratio R/a.

(ii) For most nuclei described by this potential,
R/a ranges from about 6, 0 to 9. 0, Thus for » — 0
(i.e., z—~1) the solution of the homogeneous equation
has the form (1 - z)i¢%*%+Vo?

From (i) and (ii) we see that the exact solution of Eq.
(9) can be put in the form

f(ka[IyZ):Z-ika(l -

where W(z) is normalized asymptotically such that

2)ie @ ! ), (10)

flk,q,7) ~ expliqr).

Substitution of Eq. (10) into Eq. (9) yields

z{(1-2)W" +{C= (A+ B+ 1)z}W' - ABW
=d* (R - ¢*) exp(igR)z"" (1 - 2)™, v
where
A=—ika+iaR®+V)'/?, B=-ika+iak®+V)/t+1,
12)
(& + V)2,

C=1-2ka, o=i(k-q)a,

The prime on W(z) denotes differentiation with respect
to z,

T=ialq -

Equation (11) represents an ordinary nonhomo-
geneous second order differential equation, It can be
integrated to give two complementary functions and one
particular integral, To decide which of these three func-
tions corresponds to the off-shell Jost solution, we note
that the Jost solution derived from one of the com-
plementary functions for Eq. (11) represents the
ordinary Jost solution. The other, however, does not
satisfy the appropriate boundary conditions. The par-
ticular integral gives the off-shell Jost solution. (This
point has been discussed in some detail by Fuda and
Whiting. ) It is given by®

W(z) = a?(k? - ¢*) exp(igR)

- T(+1—7)27"
XHE_O FTA-mlo+mo+n+C-1)

l,n+oct+A nto+B
X3iy

n+0+1 n+0+C (13)
In Eq. (13) 4F, is a special case of the generahzed
hypergeometric function ,F,(g ? |z) defined by Luke. !
Using Eq. (13) in Eq. (11) the off-shell Jost solution is
obtained in the form

fk,q,7)=a*(%* - g*) exp(igR)

XZ Tntl-1) 277 (1-2
o (1 - 7n! c+n m+o+C-1)

F l,n+o+A,nt+to+B
¥ 2N\p+o+1,n+0+C

)ia(k2+V0)1/2

z) . (14)

The series in Eq. (14) is uniformly convergent for all
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values of the independent variable » because the maxi-
mum value of z is less than unity.

To see that f(k,q,7) given by Eq. (14) satisfies the
asymptotic boundary condition f{(&, g, %) />, expligr), we
rewrite this equation as follows:

flk,q,7)=expligR)z™ (1 - z

F l,0+A,0+B
¥No+1,0+C

)ia(lzzﬂ’o)1 /2

’z) +a?(k? - ¢*) exp(igR)
Z)ia(k2+V0)1/2
mt (+tn)o+tn+C-1)

% l,0+n+A,c+n+B
372 o+n+1 oc+n+C

hod zum-ika (1 _

(14")

As ¥ — o, z —~exp[- (r - R)/a] <1, sothat yFp(--- |2)
=1, Thus the first term in Eq. (14’) becomes equal to
exp(igr) while the others go to zero because of the fac-
tor 2",

By using Eq. (14) the off-shell Jost function is found
to be
flk,q)=a*(#* - ¢*) exp(igR)

25 C(n+1- 1) exp[- iR+ Vy)!/?]
mo L(A="ml(oc+n)oc+n+C-1)

l,n+o+A n+o+B '
3F2< 1‘TJ>

n+tot+tl,n+to+C
In writing Eq. (15) we have used

(15)

with n=exp(~ R/a).
R> a,

Equations (14) and (15) yield in the on-shell limit

Sflk,v)=limflk, q,7)
q -k
=exp(ikR)z-“="<1~z)“"=2*Vo"’zzF1(?’B Z) (16)
and
fik)=1im fk, q)

=exp(ikR)[1 - exp(~ R/a)]"** exp[- iR (K> + V)1 /%]

szi(‘g’B ‘ 1- n) .
Asymptotically the function f(k,7) in Eq. (16) ~exp(ikr),
which is the correct behavior prescribed for the on-
shell Jost solution. Further, the analytic continuation
of f(k,#) in the upper half of the complex, % plane gives
the bound state wavefunction for the Woods—Saxon
potential given by Fligge. !!

1

(. 7 MATRIX

In Sec. II we have obtained analytic expressions for
the off-shell and on-shell Jost solutions. These results
can be utilized to write the off-shell wavefunction regu~
lar at origin. Combining Eqs. (14), (16), and (1), we
obtain

o(,q,7)
L . 1 )t(lz‘-k)u
R (e e

A,B 1 Ak - q%)
szi(C 1+exp[(1'—R)/a])+ 9
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. i) [exp(iqR)F(n +1 - 1) explik’(* - R)]
I'd-mnlc+n)o+n+C-1)

1 n-iqa+ik'a
X(l +exp[(» - R)/a] )

1,n+0+A,n+0c+E
X3k,

n=0

1
1 +exp[(» - R) a])

exp(— igR)T(n+1 - 7') explik’(r - R)]
T'lt- 7m0’ +n)n+ao’+C-1)

n+0+1 n+o+C

1 n+i(g+k’)a
8 (1 +exp[(r - R)/ﬂ])

X F l,n+0'+A,n+o’'+B 1
N p+o'+1,n+e’+C | 1+exp[(r-R)/a))]’

(18)
where
R = (2 + Vo)t /2

=ik +q)a,
T =—da(g +k').

19)

Since z <1 for all values of 7, the series representa-
tion of the generalized hypergeometric function

’ q(Bp |z) in ascending powers of z can now be used to
rewrite &(,q,v) in the form

©

&k, q,v)= Z_)O{Qicm(A, B, C,R)exp(ik'r)

1 m+i (R'=k)a
(reati=ra)

+Q [Hmn(A,B,C,q,G, T, R) exp(ik'7)
n=0

1 m+n+ia (B'~q)
(i)
-H,.(A,B,C,-q,0', 7, R)exp(ik’r)

1 men+ia(k'+q)
X(l + exp[(r - R) a]> ]}’

(20)

where

A+ +
Gm(A,B,C,R)zl"[ m,B+m,C

A,B,C+m,m+1]exp[z(k_k R,

(21a)

Q== %TTQT(k, q,s),
(21p)

Q, =a*(* - ¢*)/2i,
and

Hmn(A’ B’ C’ * q’X’ Y? R)

mtn+X+A,m+n+X+B,n+X+1,n+X+C
n+X+An+X+Bm+tn+tX+1l, m+tn+tX+C

. , T +1-¥)
*xexpliRq - ) F (X s X 40 T C= 1)

(21c)

In writing out Egs. (20b) and (20c) we have used the
notation
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F(al)r(aZJF(afi)' te -T Ay, Q9. .. ’aA}

L(b)T(b)T(bg) - - - by, by, ..., 05
Making use of Egs. (5), (6), and (20) we can write the
s-wave part of the off-shell T matrix element in the
form

T'(a4)
T'(bg)

(22)

T(p,4q,5)
2V, — §
= _pﬂ ’%) {Qicm(A’ B’ (’s R)
f = ., ( 1 m+l+ia(k'k)
% i sinpr exp(ik'r) 1+ expl0 = R) a]) dv
+ QZ Z%) [Hmn(A’B, C; q, G’ Ty R)
f"“ 1 1sm+n+ia(R'=q)
. .,
X . sinpr exp(ik 7)<1+exp[(1f—R)/a]) dr
-H,(AB,C,-q,0’, T',R)f sinpr exp(ik’'v)
0
1 1+men+ia (B'+q) (23)
(rememmm) v}
Each integral in Eq. (23) can now be written as®?
o0 R o
fo dy...:fo dy...+jR dve.-
Now by using the relation®®
L s
tyye=2 (el (24)
s=0 S
with
(a)g=T(a+s)/T(a), (25)

the integrals may be obtained in terms of elementary
transcendental functions. We thus obtain the off-shell
T matrix

T(p,q,s)
=2hs 2(

1 1D
T e n(A, B, C, R)[I,03(k) + L5, (k)]

+Q, Z{Hm,,m B,C,q,0, 7, R)[IAq) + IE(q)]

mn(A; B’ C’ - q’ o,’ T” R)[Iﬂ(l}l;( ) Iﬂ(lgl;(_ q)]})
(26)
To evaluate T(p,q,s), we need the half-off-shell T
matrix which is determined by Eqs. (3), (15), and (17).
In Eq. (26),
Iy =ML () {[(s + ik’a) sinpR ~ ap cospR] exp(ik’R)
+paexp[- (R/a)s]} (27a)
LEE) =ME(£)[(s + u+ v +1-iat)sinpR + cospR]
X exp(ik'R) (27b)
with
() 1oy (=D¥a(u+v+1-ita+iak’),
Muvs(g)— S![dzp2+ (S+ik’(l)2] ’ (28a)
@ oy (= 1)%a(p +v+1-ita+ik’a),
xMuvs(E)—sl[EZPZ+(s+“+u+1_i§07f]. (28b)
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The triple series in Eq. (26) is uniformly convergent,
This can be seen as follows. The » sum arises from

the solution of the nonhomogeneous differential Eq. (11).

We have already noted that this sum is uniformly con-
vergent if z is less than unity (see Ref. 9, p. 211). The
m sum results from the series expansion of the
hypergeometric function ,,;F,( . |z). In obtaining Eq,
(26) by using Eq. (14) via Eq. (20) we have integrated
these convergent series expansion within the circle

of convergence., The n and m series can therefore be
easily summed up on a computer for a fixed s.

As for the s sum we note that this arises from the
binomial expansion of [1/(1 + exp[(» - R)/a))]*. 1t is
involved in Egs. (27a) to (28b). The convergence of this
sum can be shown by using the relation lim,, (@),
=1/I'(a) (see Ref. 13, p. 3). For example, the in-
tegrals 1112’ — 0 like 1/s? for large s and fixed j and
v,

*Work supported in part by the Department of Atomic Energy,
Government of India.
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Critical length of a transport process in rod geometry
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In this paper, we study a two-point boundary-value problem which governs the transport of n different
type of particles in a rod of finite length. Through the construction of an upper solution we establish a
simple relation between the rod length and the physical parameters of the transport medium under which
the maximal and the minimal sequences obtained in an earlier paper converge, respectively, to a maximal
and a minimal solution of the problem. This relation leads to a lower bound for the critical length of the
rod when fission occurs in the system. The convergence of the constructed sequences gives a mathematical
justification for the existence of a physically meaningful solution to the system. It is also shown, under a
slightly stronger condition on the rod length, that the maximal solution coincides with the minimal solution
and the physical system is subcritical. In addition, an explicit recursion formula for the calculation of

approximate solutions is given.

1. INTRODUCTION

In the transport process of n-different types of
particles in a rod of length L the forward-moving
particle’s density #,,...,u, and the backward-moving
particle’s density vy,...,v, are governed by the
following coupled equations (cf. Refs. 1, 2, 3)

B gl = Ayt Ayl + D),
dv (0sx=<L),
- 25 T Bo)o =Bl + Bylx)v +qlx),
(1.1)

where u=(uy,...,u,), v=(y,...,v,) together with p, g
are n-vectors and A;, B, ({=0,1,2) are nxXn matrices.
When the ends of the rod are subjected to incident
fluxes, we have the boundary conditions

u(o):uOy Z)(L):’ULr

where u,, v, are the incident fluxes at x=0andx =L,
respectively. Eq. (1.1} is obtained from the particle’s
balance relation in which Ayu, Byv represent, respec-
tively, the loss of forward and backward moving parti-
cles due to absorption while A + Ay,v, By +Byv are
the gain due to scattering and fission. The vectors p, g
denote any other possible external sources in the sys-
tem. A fundamental question concerning the above
system is under what conditions on the length of the rod
and the physical parameters of the transport medium
the boundary-value problem (1.1), (1.2) has or has no
nonnegative solutions. From a physical point of view,
if the effect of absorption dominates the effect of scat-
tering, the transport system should have a nonnegative
solution and the existence of such a solution is indepen-
dent of the length L (see Theorem 3. 2 or the Corollary
to Theorem 3. 1), However, if scattering (and fission)
dominates absorption this system does not necessarily
have a nonnegative solution unless there is some re-
striction on L (see the example in Sec. 2). The deter-
mination of the critical length L_ so that the system
(1.1), (1.2) has a physical meaningful solution is a
very interesting (and difficult) problem in the study

of transport phenomena. The purpose of this paper is
to investigate this problem by studying the mathemati-
cal structure of the system (1,1), (1.2). Specifically,

(1.2)
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we establish some explicit conditions between L and

Ay, B, (1=0,1,2) to insure the existence of at least one
nonnegative solution to (1.1), (1.2). The usefulness of
this condition is that it leads to a lower bound for the
critical length L, in terms of the physical parameters of
the medium when scattering dominates absorption. As
is to be expected, this lower bound is independent of the
sources p, g and the boundary data #,, v;. We also give
a mathematical justification on the fact that the system
(1.1), (1. 2) has exactly one nonnegative solution for
any length L when absorption dominates scattering,

The problem (1.1), (1.2) has been investigated by
many authors using the approach of invariant imbedding
(cf. Refs. 4—7). The corresponding time-dependent
transport problem has been discussed by Bellman® and
more recently by the author, ® By studying a corre-
sponding Riccati initial-value problem for (1.1), (1. 2),
Boland and Nelson!® obtained an upper bound for the
critical length of the rod. A more general transport
problem in slab and spherical geometry was investigat-
ed by Case and Zweifel!! and by Nelson, !* In this paper,
we use a different approach which is based on the re-
sults of an earlier work by the author® using the method
of successive approximation. This method involves the
construction of two monotone sequences which converge
monotonically to a maximal and 2 minimal solution,
respectively, provided that the system has an upper
solution (see Definition 2.1). The present treatment
amplifies the previous results by constructing an upper
solution from which we can obtain some simple rela-
tions between A;, B; and L so that the physical system
is either subcritical or critical. The subcriticality
means that the system (1.1), (1.2) has a unique non-
negative solution for any nonnegative sources and
boundary data, and criticality means more than one
nonnegative solution,

In Sec. 2 we describe our process of successive ap-
proximation and state a result from Ref. 3 concerning
the convergence of the approximations to a maximal
or a minimal solution, depending on the initial iteration,
Section 3 is devoted to the construction of an upper
solution from which we establish some relations be-
tween A;, B, and L to insure the existence of at least
one nonnegative solution, This relation leads to a lower
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bound for the critical length L, when fission occurs in
the system. Finally, we show in Sec. 4 that under
suitable conditions on A;, B; and L the maximal solu-
tion coincides with the minimal solution and the system
has exactly one nonnegative solution.

2. UPPER SOLUTION

In this section we describe our process of approxi-
mations and state a result from Ref. 3 for the existence
problem. It turns out that the convergence or diver-
gence of the sequence of approximations depends on the
existence or nonexistence of an upper solution,
Throughout the paper, we assume by physical reasons
that all the elements in A;,B; (=0,1,2), p,q,u,, v,
are nonnegative piecewise continuous functions on [0, L]
and Ag, B, are diagonal matrices whose elements are
positive on [0, L]. The elements of 4;, B, are denoted
by ai®’, b{> while those of 4;, B, are denoted by
a, bV (1=1,2, i,j=1,...,n). Similar notations will
be used for the vectors u,v,p,q.

As we have indicated in the introduction, if the
probability of particle’s gain due to scattering is more
than the loss by collision, that is,

n
© ay . @)
a; )<§?1(aii +ag’),

i=1,...,n, 2.1)

n
b < 35 1) + b,
j=1

then the system (1.1), (1.2) may not have a solution
unless there are some restrictions on the length L, To
demonstrate this, we consider the following simple
example:

du

dav 2
— Lty = +
T v=(1+a)u,

u(0)=0, v(L)=n, 2.3)

where u, v are scalar functions and o, 1 are nonnega-
tive constants. It is easily seen from (2.2) and #(0)=0
that u =c sinax and v =c(a cosax + sinax), where c is
an arbitrary constant, Now, if acosoL +sinaL #0,
then (2, 2), (2.3) has a unique solution. However, if
acosal +sinal =0, that is,

2.2)

tu=v,

L= (1/0)[”17‘[ - tan-i(l/a)] 0<a<x), m=1,2,-.-,
(2.4)

the problem (2.2), (2,3) has no solution unless n=0. In
the latter case it has infinitely many solutions, The val-
ue of L given by (2. 4) is therefore the critical length of
the system for each m. The above example demon-
strates that if (2, 1) holds, one cannot expect the system
(1.1), (1.2) to have a nonnegative solution without
suitable restriction on L,

In order to insure the existence of a solution to (1. 1),
(1. 2) we employ the method of successive approxima-~
tions used in Ref, 3 for the construction of solutions.
For convenience, we define the diagonal matrices
D,, Dyby

. aﬂ(y’x))’

L) B,,(x, S)),

D (r,x)=diag(a(r,x),..

Dylx, s) =diag(B(x, s), . (2. 5)
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where for eachi=1,...,n,
a;(r, %) = exp[~ [ *a;"(n)dn],
Bile, s)=exp[- [ 0" () an]. (2.6)

By a suitable choice of the initial iteration @'", v'®) we
construct a sequence {#*’ "} from the recursion
formula (cf. Ref. 3)

u(k)(x)xDa(O,x)u0+j;)xDa(g’x)[Al(E)uu-l)(g)
+ Ay (£ * 1 (8) +p ()] dg,
E=1,2,--..(2.7)
0" (x) =Dy, L), +fo Dylx, £)[B,(£)u*(5)
+By(£)0 *V(g) + q ()] d,

To insure the convergence of the above sequence to a
solution of (1,1), (1.2), we need to find an upper solu-
tion which is defined as follows:

Definition 2,1: A pair of nonnegative functions (u,v)
is called an upper solution of (1.1), (1.2) if it is dif-
ferentiable at every point where A,;, B;,p,q are con-
tinuous and satisfies the conditions

%+Aou2Alu+A2v+p, u(0) = u,
. 2.8)
_a+30v>Blu+Bzv+q, v(L)z vy,

In the above definition the inequality « = v for vectors
u, v means that #;> v; for every i=1,...,n. An
immediate consequence of this definition is that every
nonnegative solution of (1.1), (1.2) is also an upper
solution,

Let (u, v) be a given upper solution and let #‘® =1,
v =v, The sequence from (2.7) with the initial itera-
tion #©’=u, v’ =v is called a maximal sequence and
is denoted by {#*’,7*’}, On the other hand, the se-
quence from (2, 7) with #’=v® =0 is called the
minimal sequence and is denoted by {u"*’,»*’}. The
following result from Ref, 3 insures the convergence of
these sequences.

Theovem 2,1: If there exists an upper solution (u, v)
then the maximal sequence {&*’,7®’} converges uni-
formly to a solution (#,?) of (1.1), (1.2) while the
minimal sequence {u*’, »®’} converges uniformly to a
solution (z,7). Furthermore,

0suP<y® <. sy<us-.. <u®<zW ey,

(2.9)

. $’E(2)S§(“ < v,
The solutions (#,?) and (¢, v) in Theorem 2.1 are
called, respectively, maximal and minimal solutions of
(1.1), (1.2) in the sense that any other nonnegative
solution (u,v) of (1.1), (1.2) with # <u, v <v satisfies
the relation u <u, v<7v (resp. u>u, v v). Notice that
a maximal sequence depends on the corresponding upper
solution but the minimal sequence is independent of
upper solutions. Nevertheless, the convergence of both
sequences depend on the existence of an upper solution.
Since every nonnegative solution is also an upper solu-
tion, the minimal sequence must converge to a non-
negative solution unless the problem (1.1), (1.2) has no
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nonnegative solution. This observation leads to the
following:

Theorem 2.2: The problem (1.1), (1.2) has a non-
negative solution if and only if it has an upper solution.

The usefulness of Theorems 2,1 and 2, 2 is that upper
solutions are required to satisfy only the inequality
(2. 8) which gives considerable flexibility in the choice
of such functions. In the succeeding section we will
construct an upper solution under some restrictions on
the physical parameters A4,, B, and the length L (but
not on the data p, g, u;, v ;).

3. A LOWER BOUND FOR THE CRITICAL LENGTH

In order to establish an explicit relation between the
matrices A;, B; and the length L so that the problem
(1.1), (1.2) has a nonnegative solution, we choose a
particular pair of functions (u, V) as a possible upper
solution. Specifically, we define

u(x) = Da(oy x)u() + [ fo" Da(&;x) dg]En
[ Dyx, £y alE,,

where D,, D, are the diagonal matrices given by (2. 5)
and E,=(y,...,v) is the vector in E" with its com-
ponents all equal to a constant y > 0, The value of y will
be chosen so that the pair (u,v) is an upper solution

v{x)=Dylx, LYy, + (3.1)

[see (3.11)]. Since u(0)=u,, v(L)=v, and, by direct
differentiation,
B ap=k, - %+Bov=E,, (3.2)

this pair will be an upper solution if
[fy Dalt,x)dg]E}

+ Ay ){ Dy, Lyvy + j, Dylx, £)dE)E,} +plx) <E,,
(3.3)

Ay (XD (0, x)uy +

B (Do (0,x)u, + f D, (k,x) dE]E,}

+ By w){Dylr, LYo, +[ [, Dyl ) dE]E} +qlx) <
By letting
$(x) = A (€)Do (0, %)y + Ay (x)Dylx, LYvy, + p(x),
B0 = Byr)Da(0, Wty + Byl)Dyla, Ly +a), Y
the condition (3. 3) is equivalent to
yloe) + A, 0] [, Dalk, x) dE]E,
+ Ay [ Dy, £)dEE, < Ey,
Y1) + By )] [T D8, %) dE]E
+By0)[ [." Dylx, £) dE)E, < Ey,

(8.5)

where E'c E" is the vector with its components all equal
to one,

Consider first the special case where A;, B; are
symmetric, Then A, and B, commute with any diagonal
matrix and thus the inequalities in (3. 5) may be
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written, in terms of their respective components, as

y"¢i(x>+@ @i x) )Jo (g, x)dt
<Ea(2’x)>j Bilx, Eyde <1,
Y-Id)i(’f (2 b(“ )fox ok, x)dE

+(12 ‘“x))f Blx, ) dE<1,

fori=1,...,n, where ¢;, ¥; are the components of
¢, ¥, respectively. Let M be an upper bound of ¢, ¥;
for all =1,...,n and define

a®= inf [a()], 0= inf (b)),

0=x=<L 0=x=<[L

(3.6)

¢=1,...,n,1=1,2).
ﬁ,f”— sup (E a‘”(x)) '5;:)_ sup (E b‘” ),

0=x=<L O=x<L

(8.7

Then, since
S ag,mae < [ expl- aftx ~ )]
=[1-exp(- ;"%))/ai”,
J P Bigmags [ expl- b0 (e - x))a
={1 - exp[- piV(L - )]}/,
the condition (3. 6) is certainly satisfied if
y M+ @ /a1 - exp(- a{*x))
+ @ /5901 - exp[- 5L - x)]} <
M+ B0/a)[1 - exp(- ai”x)]
+ (07/5{"H1 - exp[- B (L - x)]} < 1.

Now if for each i=1,,

piV () = @P/a)[1 - exp(~ af¥x)]
+@®/b){1 - exp[- biO(L - 1)1},

p{P )= (0f/a)[1 ~ exp(~ a{x)]
+(02/5"{1 - exp[- b (L - x)]

(3.9)

. ,n the functions

(3.10)

are strictly less than one, then by letting p{*’ be the
maximum value of p;*’(x) on [0, L] and choosing

y= M1 -p{)t ,n, 1=1,2.  (3.11)
the condition (3. 9) [and thus (3. 6)] is clearly satisfied.
With this choice of y, the pair (u, v) given by (3. 1) be-

comes an upper solution. By an application of Theorem
2.1 we have the following conclusion:

foralli=1,..,

Theovem 3.1: Assume that A;, B, ({=1,2) are sym-
metric and

p=max{p(x);0sx <L}<1 (=1,2, i=1,...,n),

(3.12)

where p{*’ are given by (3.10). Then the problem (1. 1),
(1. 2) has at least one nonnegative solution. Specifically,
the maximal sequence {#'*’, 7™} [with respect to the
upper solution given by (3.1)] converges to a maximal
solution (%, 7) while the minimal sequence {u*®’, 2%}
converges to the minimal solution (x, v).
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An immediate consequence of Theorem 3.1 is the
following:

Covollary: It A;, B; are symmetric and if

@/ + @P/0) <1

(3151)/21(0)) + (5;2)/2§0)) <1,
then for any length L <« the problem (1,1), (1.2) has
at least one nonnegative solution.

Proof: 1t is obvious that under the condition (3. 13) the
requirement (3. 12) is fulfilled for any L <w«, The re-
sult follows immediately from Theorem 3. 1.

(3.13)

We next consider nonsymmetric matrices 4,, B,.
Since the inequalities in (3. 5) are equivalent to

+§3 P, osg, ) as+aP) [ 18,0, HdE) <1
(i=1,...,n), (3.14)
yip, ) +,§U’m(" ), oug,x)dE
+bm(ﬁf)] B;lx, £)dE] <1
if we define
R i) ((a{®)/a;")1 - exp(- a¥x)]
+[a3(x)/b01{1 - exp[- b{V(L - x)]D),
G=1,...,n), (3.15)
(2) x)_z ((b(i)(x)/a(ﬂ) 1~ exp(— (O)x ]
+[6(0)/bV K1 - exp[- b, (L - x)]}),
then by (3. 8) the relations in (3. 14) hold if
yiM+o{ <1 for every[=1,2, i=1,...,n, (3.16)

where 5"’ is the least upper bound of ¢;*’(x) on [0, L].
Now, if o} <1, then (3. 16) holds for any y satisfying the
inequality

yz M -5 forl=1,2, i=1,...,n. (3.17)

With this choice of y the pair (u, V) is again an upper
solution. This leads to the following conclusion for the
general case where 4;, B, are not necessarily
symmetric.

Theorvem 3. 2: Assume that

oV =zsupleP(x); 0sx < L}<1 (=1,2, i=1,...,n),

(3.18)

where o (x) is given by (3.15). Then the problem (1.1),
(1. 2) has at least one nonnegative solution, In fact, all
the conclusions in Theorem 3.1 hold.

The physical meaning of the results in the above
theorems is that if the particles gain due to scattering
is no more than the loss due to absorption, then for
any L < the transport system cannot be supercritical
as is to be expected. On the other hand, if scattering
dominates absorption, then these results can be used to
obtain a lower bound for the critical length of the rod.
To see this, we assume, for convenience, that A4,, B,
are symmetric. Since, by (3.10), each function

1770 J. Math. Phys., Vol. 17, No. 9, September 1976

ps(x) is in the form of
px)=cy[1 - exp(~ cox)] +c3{1 ~ exp[— ¢, (L - x)]},
(c;>0,7i=1,,..,4)

an elementary calculation shows that p”(x) <0 for all
x€[0,L] and p(r) has the maximum value at

%, =(c2 + ) e L +1nlciey/cae)).

Hence the maximum of p(x) is p=p{r,) when 0 <x

<L and p=max{p(0), p(L)} when x,, <0 or x,,> L. In any
case we can obtain a more explicit relation for p‘”
terms of the elements of A;, B;, This relation can then
be used to determine the length L from (3. 12) and thus
gives a lower bound for the critical length L,. As an
illustration, we consider the special case

M) _ 50 =) _ =@ (1) @)
a;’=b", a;’=a;", b

(3.19)

Then for each!=1,2, i=1,...,n, the maximum of
iV (x) occurs at x,,= L/2 and thus

_(“—p:“ L/Z (—m/am [1- exp(-
P =p N (L/2)=2(6{"/b0)[1 - exp(~

a»L/2)],
(O)L/z) 3 20)
The above relation implies that (3. 12) is satisfied if
(O)L/Z

- b50L/2)!

a’+a® (a“”[l - exp(~
BD B <1 - exp( @20

This observation leads to the following.

Theovem 3.3: Assume that A;, B; are symmetric and
(3.19) holds. Then the problem (1.1), (1.2) has at least
one nonnegative solution for any L <« when

5;1)+5;2)§££0), 5:1)+5§2>§21§0) G=1,...,n).
(3.22)
On the other hand, if
5;1)+Elg2)>gi«n’ 551)+5;2)>2§0> G=1,...,n),
(3.23)

then it has at least one nonnegative solution provided
that

L <min 2 1< A
n __..J__Q_L_._
(0) i(i)+ai )_—qio) 4

2 b1+
—— 1nl =.._x_=_5_1__7_> .
21(0) (b}“-Fbi( )_QiO)

Pyoof: The first part of the theorem follows from the
corollary to Theorem 3.1. Since a simple manipulation
shows that the relation (3. 24) is equivalent to (3. 21),
the conclusions of the second part follows immediately
from Theorem 3. 1.

(3.24)

The condition (3. 24) gives a more explicit lower
bound for the critical length L, in terms of the physical
parameters of the transport medium when A,, B, are
symmetric and (3.19) holds. In case these conditions
are not satisfied, we can still find a lower bound for
L, by evaluating ¢} and then apply Theorem 3.2. It
should be pointed out that the lower bound for L, given
above is based on the particular choice of the upper
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solution (u,v). A suitable choice of other upper solu-
tions may improve these estimates.

4. UNIQUENESS OF THE SOLUTION

In the preceding section we have constructed an upper
solution which insures the convergence of the maximal
and the minimal sequence to a maximal and a minimal
solution, respectively. It has been shown in Ref. 3 that
if the elements of 4,, B, satisfy the conditions

M:

[a{P ) + b )] < 0" ),

-
[
—

(4.1
2[ 2)(X +b(2)(x)]<b(0)(x

then the maximal solution coincides with the minimal
solution and the coincidence is independent of the length
L. However, when fission occurs, this uniqueness
property may not hold unless there is a restriction on
L, This is demonstrated by the example given in (2. 2),
(2. 3). The purpose of this section is to establish some
uniqueness results by imposing some conditions on L
when scattering (including fission) dominates absorption.
Here we do not assume the symmetric property of

A,, B,. Our first result is the following

Theorem 4. 1: Assume that
2’ +3? <ai”(1 - exp(- ¢ L)I,

B+ <bO[1 - expl- BL)T, “?

i=1,...,n).
Then any maximal solution {,7) coincides with the
minimal solution (#,v). Furthermore, the problem
(1.1), (1.2) has at most one nonnegative solution,

Proof: Letu=u~u, v=v-v, Thenu=>0, v=>0 and
(4, v) satisfies the system (1.1), (1.2) with p=¢g=u,
=v;=0. From the integral representation of the sys-
tem, the pair (x,v) satisfies the integral equations
[see (2.7)]

(@) = [T Da(g, 0N A (W) + A (B0 (9)] dE,

(r e [0, L]). 4.3)
vix) = [ F Doloe, )[By(E)u(e) + By(e)v(8)]de,
In terms of the components of #,v, Eq. (4.3) is
equivalent to
w )= " a.~<£,x)(§}[ a;} (§)uy(8) + @) v, (g))dz,
(i=1,...,n). (4. 4)

vi)=1, bt 02 (b4 eey ) + b (,(8)])at,

Let the indices 7,, ¢{ and the points x4,x, [0, L] be such
that
uy(xy) = max {Oggaé[ul(x)]},

=lyeaasn

v;,(6y) = max {max[v () ]} (4.5)

i=l, . .00 J0sx=L
Then by letting x =x,, i =4, in the first equation of (4.4)

and x =x;, {=17; in the second equation we obtain
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)< [ el @ (5, - )
(E attius o) (5 i) v 0]

<@L - exp(- a0x)]

—=(2)
X [Py () + T v (1)),

: 4.6)
vy, e0) < [, expf- b3 (g~ x1)]
(2 iz, b+ (2 023 0) 01, 00] a2
< (i1 - exp[- b (L - 2]}
x[B{2uy (o) + 52y )], #.7)

In obtaining the inequalities in (4, 6), (4.7) we have
used the nonnegative properties of the components of
u,v,A,, B, and the fact that a,(£,x) < exp[~ 2" (x - £)]
and B;lx, £) < exp[- b (£ ~ x)]. Now if u; (xo)/ v;, &),
then, by (4. 6),

g, 060) < (@)1

< (Efg))-1[1 - exp(-a

_ exp( a(())xo)](‘(i) +a(2))ui0(x0)
O)L)] 1) +a(2 ))um(xo) (4. 8)

However, the condition (4, 2) shows that (4. 8) cannot

hold unless u; (x;) =0. Hence we must have u;(x) =v;(x)

=0 for every ¢=1,...,n since u;,v; are all nonnegative
n [0,L]. In case v;,(x;)> u; (xy), then (4.7) implies that

v, ey < (_lzfg’)'l[l - exp(- éég)L)](Zi(;) +fo))vfi(x1)-

4.9)

This is again impossible unless ’Usi(’ﬁ) =0. By the non-
negative property of #;, v; we have again #;(x)=v,x)=0
for each ¢, This proves that u=u, v=v, To show the
uniqueness problem we let @*, v*) be any nonnegative
solution of (1.1), (1.2). Since every nonnegative solu-
tion is also an upper solution, the sequence {#*’, 7%’}
with #® =u*, 5® =¢* for every k=1,2,--- is clearly
a maximal sequence and converges to (u*,v*), It
follows from the conclusion of the first part of the the-
orem that #* =u, v*=v. Hence the problem (1.1), (1.2)
cannot have more than one nonnegative solution, This
completes the proof of the theorem,

It is to be noted that in proving the uniqueness prob-
lem in the above theorem we have used the nonnegative
property of #~u=> 0, v—v> 0 which may not hold for
arbitrary pair of nonnegative solutions of (1.1), (1. 2).
This is another interesting application of the monotone
approach for boundary-value problems.

The results of Theorem 3.2 and 4. 1 lead immediately
to the following conclusion:

Theorem 4.2: If (3.18), (4.2) hold, then the problem
(1.1), (1.2) has exactly one nonnegative solution and
thus the system is subcritical. Moreover, this solution
can be determined from the recursion formula (2. 7)
with =20 =0,

Covollary: If A;, B; are symmetric and if either
gfm:_b_im), a+a®< Q,@), 5{(1).,,5{(2) Sg‘gm’

(4.10)

or the conditions (3.19), (4.2) hold, then the problem
(1.1), (1. 2) has a unique nonnegative solution,

i=1,...,n
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Proof: Since the condition (4. 10) implies both (3. 13)

and (4. 2) for any L <=, the conclusion for the first case
follows from Theorem 4.1 and the Corollary to Theorem

3.1. In fact, the existence of a unique solution is in-
dependent of L. In case (3.19), (4.2) hold, then by (4.2)
the condition (3, 21) is satisfied, Since (3.21) and (3. 19)
imply (3.12), the conclusion for the second case follows
from Theorems 3.1 and 4.1,
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